-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweird.py
156 lines (121 loc) · 6.29 KB
/
weird.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.metrics.classification import _weighted_sum
class WeiRD(BaseEstimator, ClassifierMixin):
"""WeiRD - weighted robust distance classifier
WeiRD stands for "Weighted Robust Distance" and is a fast and simple classification algorithm
that assigns class labels based on the distance to class prototypes_. The distance is the
Manhattan or Euclidian distance between a current sample and a prototype in a space, in which
each feature dimension is scaled by the two-sample t-value of the respective feature in the
training data. Class prototypes_ correspond to the arithmetic prototypes_ of each feature in the
training data. The current implementation works for two-class problems only.
__________________________________________________________________________
Matthias Guggenmos, Katharina Schmack and Philipp Sterzer, "WeiRD - a fast and performant
multivariate pattern classifier," 2016 International Workshop on Pattern Recognition in
Neuroimaging (PRNI), Trento, Italy, 2016, pp. 1-4. doi: 10.1109/PRNI.2016.7552349
Example:
import numpy as np
from weird import WeiRD
# parameters
n_samples_per_class = 100
n_features = 20
# create data
X1 = np.random.rand(n_features) + np.random.rand(n_samples_per_class, n_features)
X2 = np.random.rand(n_features) + np.random.rand(n_samples_per_class, n_features)
X_fit = np.vstack((X1, X2))
X_predict = X_fit + np.random.rand(2*n_samples_per_class, n_features)
y = np.hstack((np.zeros(n_samples_per_class), np.ones(n_samples_per_class)))
# perform classification
weird = WeiRD()
weird.fit(X_fit, y)
predictions = weird.predict(X_predict)
print('Classification accuracy = %.1f%%' % (100*np.mean((predictions == y))))
"""
def __init__(self, centroid_weighting=True, stats_weighting=True, exponential=False,
distance_type='manhattan', verbose=0):
"""
Args:
centroid_weighting (boolean): If true, the gradual distance of a new sample to the
centroids is considered, else it is only considered to which of the two centroids
the sample is closer, i.e. a binary measure. Defaults to True.
stats_weighting (boolean): Switch on 'statistical' weighting, i.e. scaling the feature
space with independent t-test values from the training data. Defaults to True.
exponential (boolean): Scale feature importances exponentially. Defaults to False.
distance_type (str): if 'manhattan', compute distances to prototypes_ using the
Manhattan distance (L1 norm); if 'euclidean', compute distances to prototypes_ using
the Euclidean distance. Defaults to 'manhattan'.
verbose (int): Legacy parameter without any function at present. Defaults to 0.
"""
self.centroid_weighting = centroid_weighting
self.stats_weighting = stats_weighting
self.exponential = exponential
self.distance_type = distance_type
self.verbose = verbose
self.classes_ = None
self.feature_importances_ = None
self.prototypes_ = None
def fit(self, X, y):
""" Train the model.
Args:
X (np.ndarray, List): Data in the form of rows x columns = samples x features.
y (np.ndarray, List): Class labels, one value per row of X.
Returns:
the class instance
"""
X = np.array(X)
y = np.array(y)
self.classes_ = np.unique(y)
x1 = X[np.array(y) == self.classes_[0], :]
x2 = X[np.array(y) == self.classes_[1], :]
self.prototypes_ = np.vstack((x1.mean(axis=0), x2.mean(axis=0)))
if self.stats_weighting:
statistic = _ttest_ind(x1, x2, self.prototypes_)
statistic[np.isnan(statistic)] = 0
self.feature_importances_ = np.atleast_1d(abs(statistic[:, np.newaxis]).squeeze())
if self.exponential:
self.feature_importances_ = np.exp(self.feature_importances_)
else:
self.feature_importances_ = np.ones(X.shape[1])
return self
def predict(self, X):
""" Predict new samples based on the trained model.
Args:
X (np.ndarray, List): Data in the form of rows x columns = samples x features.
Returns:
np.ndarray: Predicted class labels.
"""
dec = self.decision_function(X)
return self.classes_[(dec > 0).astype(int)]
def decision_function(self, X):
""" Compute the (weighted) sum of votes.
Args:
X (np.ndarray, List): Data in the form of rows x columns = samples x features.
Returns:
np.ndarray: The (weighted) sum of votes for each sample in the form 1 x samples.
"""
X = np.array(X)
if self.distance_type == 'manhattan':
if self.centroid_weighting:
self.votes_ = abs(X - self.prototypes_[0, :]) - abs(X - self.prototypes_[1, :])
else:
self.votes_ = (abs(X - self.prototypes_[0, :]) > abs(X - self.prototypes_[1, :])) - 0.5
dec = _weighted_sum(self.votes_, self.feature_importances_) / self.votes_.shape[1]
elif self.distance_type == 'euclidean':
dec = np.sum((self.feature_importances_ * (X - self.prototypes_[0, :])) ** 2, axis=1) - \
np.sum((self.feature_importances_ * (X - self.prototypes_[1, :])) ** 2, axis=1)
return dec
def _ttest_ind(x1, x2, means):
""" Efficient implementation of a two-sample t-test
Args:
x1 (np.ndarray): Data of class 1 in the form rows x columns = samples x features.
x2 (np.ndarray): Data of class 2 in the form rows x columns = samples x features.
means (np.ndarray): Mean values for each feature in the form 1 x features
(corresponds to prototypes)
Returns:
np.ndarray: two-sample t-test values for each feature
"""
n1 = x1.shape[0]
n2 = x2.shape[0]
gsd = np.sqrt(((n1 - 1) * np.nanvar(x1) + (n2 - 1) * np.nanvar(x2)) / (n1 + n2 - 2))
t = (means[0] - means[1]) / (gsd * np.sqrt(1 / n1 + 1 / n2))
return t