-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
149 lines (117 loc) · 4.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from arguments import get_args
import os
import random
import gym
import numpy as np
import torch
from tensorboardX import SummaryWriter
import torchvision.utils as vutils
import tools
from models import WGAN
from wrappers import InputTransformation
MODEL_DIR = 'model'
DEFAULT_MODEL_NAME = 'model_{}.save'
log = gym.logger
log.set_level(gym.logger.INFO)
lamda=10.
args = get_args()
def iterate_batches(envs, batch_size=args.batch_size):
batch = [e.reset() for e in envs]
env_gen = iter(lambda: random.choice(envs), None)
while True:
e = next(env_gen)
obs, reward, is_done, _ = e.step(e.action_space.sample())
if np.mean(obs) > 0.01:
batch.append(obs)
if len(batch) == batch_size:
yield torch.tensor(np.array(batch, dtype=np.float32))
batch.clear()
if is_done:
e.reset()
if __name__ == "__main__":
START_ITER = args.start_iter
END_ITER = args.end_iter
device = torch.device("cpu" if args.no_cuda else "cuda")
envs = [InputTransformation(gym.make(name)) for name in args.env_names]
input_shape = envs[0].observation_space.shape
if args.restore:
net_gener = torch.load(
os.path.join(args.restore, DEFAULT_MODEL_NAME.format("generator")))
net_discr = net_gener = torch.load(
os.path.join(args.restore,
DEFAULT_MODEL_NAME.format("discriminator")))
else:
# net_discr = Discriminator(input_shape=input_shape).to(device)
# net_gener = Generator(output_shape=input_shape).to(device)
wgan = WGAN(label=args.dataset, z_size=args.z_size,
image_size=args.image_size,
image_channel_size=args.channel_size,
c_channel_size=args.disc_filters,
g_channel_size=args.gener_filters)
tools.gaussian_intiailize(wgan, 0.02)
# objective = torch.nn.BCELoss()
gen_optimizer = torch.optim.Adam(params=wgan.generator.parameters(),
lr=args.lr,
betas=(0.5, 0.999)
)
critic_optimizer = torch.optim.Adam(params=wgan.critic.parameters(),
lr=args.lr,
betas=(0.5, 0.999)
)
# prepare the model and statistics.
wgan.train()
writer = SummaryWriter()
gen_losses = []
c_losses = []
iter_no = 0
true_labels_v = torch.ones(args.batch_size, dtype=torch.float32, device=device)
fake_labels_v = torch.zeros(args.batch_size, dtype=torch.float32, device=device)
batches_generator = iterate_batches(envs)
for iter_no in range(START_ITER, END_ITER):
print("Iter: " + str(iter_no))
for i in range(args.disc_iter):
x = next(batches_generator)
# train generator
critic_optimizer.zero_grad()
z = wgan.sample_noise(args.batch_size)
c_loss, g = wgan.c_loss(x, z, return_g=True)
c_loss_gp = c_loss + wgan.gradient_penalty(x, g, lamda=lamda)
# print(c_loss_gp)
c_losses.append(c_loss_gp.item())
c_loss_gp.backward()
critic_optimizer.step()
for i in range(args.gen_iter):
batch_v = next(batches_generator)
# generate extra fake samples, input is 4D: (batch, filters, x, y)
z = wgan.sample_noise(args.batch_size)
batch_v = batch_v.to(device)
gen_output_v = wgan.generator(z)
# train discriminator
gen_optimizer.zero_grad()
z = wgan.sample_noise(args.batch_size)
g_loss = wgan.g_loss(z)
# print(g_loss)
gen_losses.append(g_loss.item())
g_loss.backward()
gen_optimizer.step()
if iter_no % args.log_iter == 0:
log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e",
iter_no, np.mean(gen_losses),
np.mean(c_losses))
writer.add_scalar("gen_loss", np.mean(gen_losses), iter_no)
writer.add_scalar("c_loss", np.mean(c_losses), iter_no)
gen_losses = []
c_losses = []
if iter_no % args.save_image_iter == 0:
writer.add_image("fake",
vutils.make_grid(gen_output_v.data[:64]),
iter_no)
writer.add_image("real",
vutils.make_grid(batch_v.data[:64]),
iter_no)
if iter_no % args.save_model_iter == 0:
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
torch.save(wgan,
os.path.join(MODEL_DIR,
DEFAULT_MODEL_NAME.format("wgan")))