-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmoving.cc
111 lines (90 loc) · 3.7 KB
/
moving.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Simple harmonic oscillator, using the moving basis, one trajectory.
// Different unravelings can be chosen by uncommenting or
// commenting out the appropriate lines.
#include <cmath>
#include <cstdio>
#include <iostream>
#include <fstream>
#include "ACG.h"
#include "Traject.h"
#include "State.h"
#include "Operator.h"
#include "FieldOp.h"
#include "Complex.h"
main()
{
// Basic operators
IdentityOperator Id;
AnnihilationOperator A;
NumberOperator N;
Operator Ac = A.hc();
// The Hamiltonian
double omega = 1.0;
Operator H = omega*Ac*A;
// The Lindblad operators
double gamma = 1.0;
const int nOfLindblads = 1;
Operator L1 = gamma*A;
Operator L[nOfLindblads] = {L1};
// The initial state
int dim = 4; // cutoff Hilbert space dimension, can be small
// since the moving basis is used.
Complex alpha(1.4,-0.4);
//int m=5;
//State psi(dim,m,alpha); // excited coherent state |alpha,m>
State psi(dim,0,alpha); // coherent state |alpha>
// (centered at alpha, i.e., represented as the
// ground state of the excited basis {|alpha,m>})
// See "State.h" for more details.
// The random number generator
int seed = 74298;
ACG gen(seed,55);
ComplexNormal rand1(&gen); // noise function for QSD
//ComplexUniform rand1(&gen); // noise function for Quantum Jumps
// Stepsize and integration time
double dt=0.01; // basic time step
int numdts=10; // time interval between outputs = numdts*dt
int numsteps=100; // total integration time = numsteps*numdts*dt
double accuracy = 0.000001;
AdaptiveStep theStepper(psi,H,nOfLindblads,L,accuracy);
// QSD unraveling
// deterministic part: adaptive stepsize 4th/5th order Runge Kutta
// stochastic part: fixed stepsize Euler
//AdaptiveStochStep theStepper(psi,H,nOfLindblads,L,accuracy);
// QSD unraveling
// deterministic part: adaptive stepsize 4th/5th order Runge Kutta
// stochastic part: Euler,
// same (variable) stepsize as deterministic part
//AdaptiveJump theStepper(psi,H,nOfLindblads,L,accuracy,"jump_times");
// Quantum Jumps unraveling (jumps in file "jump_times")
// deterministic part: adaptive stepsize 4th/5th order Runge Kutta
// stochastic part: Euler,
// same (variable) stepsize as deterministic part
int nOfMovingFreedoms = 1; // Moving basis for 1 degree of freedom.
// We dynamically adjust the number of basis vectors. Our criterion for
// this adjustment depends on parameters `pCutoff' the cutoff
// probability, and `nPad', the pad size, which represents the number of
// boundary basis states that are checked for significant probability. We
// require the total probability of the top `nPad' states to be no
// greater than `pCutoff', increasing and decreasing the number of states
// actually used accordingly, as the integration proceeds along the
// quantum trajectory.
// See J. Phys. A 28, 5401 (1995) for more details.
double pCutoff = 0.01;
int nPad = 2;
// Output
const int nOfOut = 2;
Operator outlist[nOfOut] = {A,N}; // Operators to output
char *flist[nOfOut] = {"A.out","N.out"}; // Output files
int pipe[4] = {1,2,5,7};
// Standard output:
// t,Re<A>,Im<A>,<N>,<N^2>-<N>^2,dim,steps
// where `t' is time,
// `dim' is the effective dimension of Hilbert space,
// and steps is the number of adaptive steps taken.
// (for more explanation see `onespin.cc')
// Simulate one trajectory (for several trajectories, see `onespin.cc')
Trajectory theTraject(psi,dt,theStepper,&rand1);
theTraject.plotExp(nOfOut,outlist,flist,pipe,numdts,numsteps,
nOfMovingFreedoms, pCutoff, nPad);
}