This repository contains a study on the YOLO v8 network introduced by Ultralytics.
For more information, check out the GitHub repository and the documentation.
Find a survey on the YOLO architectures at arXive2304.00501.
pip install ultralytics
yolo --help
WARNING '--help' does not require leading dashes '--', updating to 'help'.
Arguments received: ['yolo', '--help']. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of ('detect', 'segment', 'classify', 'pose')
MODE (required) is one of ('train', 'val', 'predict', 'export', 'track', 'benchmark')
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
cd gpu
docker compose up
cd cpu
docker compose up