forked from PixarAnimationStudios/OpenUSD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix3d.cpp
504 lines (440 loc) · 13.9 KB
/
matrix3d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix3.template.cpp file to make changes.
#include "pxr/base/gf/matrix3d.h"
#include "pxr/base/gf/matrix3f.h"
#include "pxr/base/gf/math.h"
#include "pxr/base/gf/ostreamHelpers.h"
#include "pxr/base/tf/type.h"
#include "pxr/base/gf/rotation.h"
#include <float.h>
#include <iostream>
TF_REGISTRY_FUNCTION(TfType) {
TfType::Define<GfMatrix3d>();
}
std::ostream&
operator<<(std::ostream& out, const GfMatrix3d& m)
{
return out
<< "( ("
<< Gf_OstreamHelperP(m[0][0]) << ", "
<< Gf_OstreamHelperP(m[0][1]) << ", "
<< Gf_OstreamHelperP(m[0][2])
<< "), ("
<< Gf_OstreamHelperP(m[1][0]) << ", "
<< Gf_OstreamHelperP(m[1][1]) << ", "
<< Gf_OstreamHelperP(m[1][2])
<< "), ("
<< Gf_OstreamHelperP(m[2][0]) << ", "
<< Gf_OstreamHelperP(m[2][1]) << ", "
<< Gf_OstreamHelperP(m[2][2])
<< ") )";
}
GfMatrix3d::GfMatrix3d(const GfMatrix3f& m)
{
Set(m[0][0], m[0][1], m[0][2],
m[1][0], m[1][1], m[1][2],
m[2][0], m[2][1], m[2][2]);
}
GfMatrix3d::GfMatrix3d(const std::vector< std::vector<double> >& v)
{
double m[3][3] = {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}};
for(size_t row = 0; row < 3 && row < v.size(); ++row) {
for (size_t col = 0; col < 3 && col < v[row].size(); ++col) {
m[row][col] = v[row][col];
}
}
Set(m);
}
GfMatrix3d::GfMatrix3d(const std::vector< std::vector<float> >& v)
{
double m[3][3] = {{1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, 0.0, 1.0}};
for(size_t row = 0; row < 3 && row < v.size(); ++row) {
for (size_t col = 0; col < 3 && col < v[row].size(); ++col) {
m[row][col] = v[row][col];
}
}
Set(m);
}
GfMatrix3d::GfMatrix3d(const GfRotation &rot)
{
SetRotate(rot);
}
GfMatrix3d &
GfMatrix3d::SetDiagonal(double s)
{
_mtx[0][0] = s;
_mtx[0][1] = 0.0;
_mtx[0][2] = 0.0;
_mtx[1][0] = 0.0;
_mtx[1][1] = s;
_mtx[1][2] = 0.0;
_mtx[2][0] = 0.0;
_mtx[2][1] = 0.0;
_mtx[2][2] = s;
return *this;
}
GfMatrix3d &
GfMatrix3d::SetDiagonal(const GfVec3d& v)
{
_mtx[0][0] = v[0]; _mtx[0][1] = 0.0; _mtx[0][2] = 0.0;
_mtx[1][0] = 0.0; _mtx[1][1] = v[1]; _mtx[1][2] = 0.0;
_mtx[2][0] = 0.0; _mtx[2][1] = 0.0; _mtx[2][2] = v[2];
return *this;
}
double *
GfMatrix3d::Get(double m[3][3])
{
m[0][0] = _mtx[0][0];
m[0][1] = _mtx[0][1];
m[0][2] = _mtx[0][2];
m[1][0] = _mtx[1][0];
m[1][1] = _mtx[1][1];
m[1][2] = _mtx[1][2];
m[2][0] = _mtx[2][0];
m[2][1] = _mtx[2][1];
m[2][2] = _mtx[2][2];
return &m[0][0];
}
bool
GfMatrix3d::operator ==(const GfMatrix3d &m) const
{
return (_mtx[0][0] == m._mtx[0][0] &&
_mtx[0][1] == m._mtx[0][1] &&
_mtx[0][2] == m._mtx[0][2] &&
_mtx[1][0] == m._mtx[1][0] &&
_mtx[1][1] == m._mtx[1][1] &&
_mtx[1][2] == m._mtx[1][2] &&
_mtx[2][0] == m._mtx[2][0] &&
_mtx[2][1] == m._mtx[2][1] &&
_mtx[2][2] == m._mtx[2][2]);
}
bool
GfMatrix3d::operator ==(const GfMatrix3f &m) const
{
return (_mtx[0][0] == m._mtx[0][0] &&
_mtx[0][1] == m._mtx[0][1] &&
_mtx[0][2] == m._mtx[0][2] &&
_mtx[1][0] == m._mtx[1][0] &&
_mtx[1][1] == m._mtx[1][1] &&
_mtx[1][2] == m._mtx[1][2] &&
_mtx[2][0] == m._mtx[2][0] &&
_mtx[2][1] == m._mtx[2][1] &&
_mtx[2][2] == m._mtx[2][2]);
}
GfMatrix3d
GfMatrix3d::GetTranspose() const
{
GfMatrix3d transpose;
transpose._mtx[0][0] = _mtx[0][0];
transpose._mtx[1][0] = _mtx[0][1];
transpose._mtx[2][0] = _mtx[0][2];
transpose._mtx[0][1] = _mtx[1][0];
transpose._mtx[1][1] = _mtx[1][1];
transpose._mtx[2][1] = _mtx[1][2];
transpose._mtx[0][2] = _mtx[2][0];
transpose._mtx[1][2] = _mtx[2][1];
transpose._mtx[2][2] = _mtx[2][2];
return transpose;
}
GfMatrix3d
GfMatrix3d::GetInverse(double *detPtr, double eps) const
{
double a00,a01,a02,a10,a11,a12,a20,a21,a22;
double det, rcp;
a00 = _mtx[0][0];
a01 = _mtx[0][1];
a02 = _mtx[0][2];
a10 = _mtx[1][0];
a11 = _mtx[1][1];
a12 = _mtx[1][2];
a20 = _mtx[2][0];
a21 = _mtx[2][1];
a22 = _mtx[2][2];
det = -(a02*a11*a20) + a01*a12*a20 + a02*a10*a21 -
a00*a12*a21 - a01*a10*a22 + a00*a11*a22;
if (detPtr) {
*detPtr = det;
}
GfMatrix3d inverse;
if (GfAbs(det) > eps) {
rcp = 1.0 / det;
inverse._mtx[0][0] = (-(a12*a21) + a11*a22)*rcp;
inverse._mtx[0][1] = (a02*a21 - a01*a22)*rcp;
inverse._mtx[0][2] = (-(a02*a11) + a01*a12)*rcp;
inverse._mtx[1][0] = (a12*a20 - a10*a22)*rcp;
inverse._mtx[1][1] = (-(a02*a20) + a00*a22)*rcp;
inverse._mtx[1][2] = (a02*a10 - a00*a12)*rcp;
inverse._mtx[2][0] = (-(a11*a20) + a10*a21)*rcp;
inverse._mtx[2][1] = (a01*a20 - a00*a21)*rcp;
inverse._mtx[2][2] = (-(a01*a10) + a00*a11)*rcp;
}
else {
inverse.SetScale(FLT_MAX);
}
return inverse;
}
double
GfMatrix3d::GetDeterminant() const
{
return (_mtx[0][0] * _mtx[1][1] * _mtx[2][2] +
_mtx[0][1] * _mtx[1][2] * _mtx[2][0] +
_mtx[0][2] * _mtx[1][0] * _mtx[2][1] -
_mtx[0][0] * _mtx[1][2] * _mtx[2][1] -
_mtx[0][1] * _mtx[1][0] * _mtx[2][2] -
_mtx[0][2] * _mtx[1][1] * _mtx[2][0]);
}
double
GfMatrix3d::GetHandedness() const
{
// Note: This can be computed with fewer arithmetic operations using a
// cross and dot product, but it is more important that the result
// is consistent with the way the determinant is computed.
return GfSgn(GetDeterminant());
}
/* Make the matrix orthonormal in place using an iterative method.
* It is potentially slower if the matrix is far from orthonormal (i.e. if
* the row basis vectors are close to colinear) but in the common case
* of near-orthonormality it should be just as fast. */
bool
GfMatrix3d::Orthonormalize(bool issueWarning)
{
// orthogonalize and normalize row vectors
GfVec3d r0(_mtx[0][0],_mtx[0][1],_mtx[0][2]);
GfVec3d r1(_mtx[1][0],_mtx[1][1],_mtx[1][2]);
GfVec3d r2(_mtx[2][0],_mtx[2][1],_mtx[2][2]);
bool result = GfVec3d::OrthogonalizeBasis(&r0, &r1, &r2, true);
_mtx[0][0] = r0[0];
_mtx[0][1] = r0[1];
_mtx[0][2] = r0[2];
_mtx[1][0] = r1[0];
_mtx[1][1] = r1[1];
_mtx[1][2] = r1[2];
_mtx[2][0] = r2[0];
_mtx[2][1] = r2[1];
_mtx[2][2] = r2[2];
if (not result and issueWarning)
TF_WARN("OrthogonalizeBasis did not converge, matrix may not be "
"orthonormal.");
return result;
}
GfMatrix3d
GfMatrix3d::GetOrthonormalized(bool issueWarning) const
{
GfMatrix3d result = *this;
result.Orthonormalize(issueWarning);
return result;
}
/*
** Scaling
*/
GfMatrix3d&
GfMatrix3d::operator*=(double d)
{
_mtx[0][0] *= d; _mtx[0][1] *= d; _mtx[0][2] *= d;
_mtx[1][0] *= d; _mtx[1][1] *= d; _mtx[1][2] *= d;
_mtx[2][0] *= d; _mtx[2][1] *= d; _mtx[2][2] *= d;
return *this;
}
/*
** Addition
*/
GfMatrix3d &
GfMatrix3d::operator+=(const GfMatrix3d &m)
{
_mtx[0][0] += m._mtx[0][0];
_mtx[0][1] += m._mtx[0][1];
_mtx[0][2] += m._mtx[0][2];
_mtx[1][0] += m._mtx[1][0];
_mtx[1][1] += m._mtx[1][1];
_mtx[1][2] += m._mtx[1][2];
_mtx[2][0] += m._mtx[2][0];
_mtx[2][1] += m._mtx[2][1];
_mtx[2][2] += m._mtx[2][2];
return *this;
}
/*
** Subtraction
*/
GfMatrix3d &
GfMatrix3d::operator-=(const GfMatrix3d &m)
{
_mtx[0][0] -= m._mtx[0][0];
_mtx[0][1] -= m._mtx[0][1];
_mtx[0][2] -= m._mtx[0][2];
_mtx[1][0] -= m._mtx[1][0];
_mtx[1][1] -= m._mtx[1][1];
_mtx[1][2] -= m._mtx[1][2];
_mtx[2][0] -= m._mtx[2][0];
_mtx[2][1] -= m._mtx[2][1];
_mtx[2][2] -= m._mtx[2][2];
return *this;
}
/*
** Negation
*/
GfMatrix3d
operator -(const GfMatrix3d& m)
{
return
GfMatrix3d(-m._mtx[0][0], -m._mtx[0][1], -m._mtx[0][2],
-m._mtx[1][0], -m._mtx[1][1], -m._mtx[1][2],
-m._mtx[2][0], -m._mtx[2][1], -m._mtx[2][2]);
}
GfMatrix3d &
GfMatrix3d::operator*=(const GfMatrix3d &m)
{
// Save current values before they are overwritten
GfMatrix3d tmp = *this;
_mtx[0][0] = tmp._mtx[0][0] * m._mtx[0][0] +
tmp._mtx[0][1] * m._mtx[1][0] +
tmp._mtx[0][2] * m._mtx[2][0];
_mtx[0][1] = tmp._mtx[0][0] * m._mtx[0][1] +
tmp._mtx[0][1] * m._mtx[1][1] +
tmp._mtx[0][2] * m._mtx[2][1];
_mtx[0][2] = tmp._mtx[0][0] * m._mtx[0][2] +
tmp._mtx[0][1] * m._mtx[1][2] +
tmp._mtx[0][2] * m._mtx[2][2];
_mtx[1][0] = tmp._mtx[1][0] * m._mtx[0][0] +
tmp._mtx[1][1] * m._mtx[1][0] +
tmp._mtx[1][2] * m._mtx[2][0];
_mtx[1][1] = tmp._mtx[1][0] * m._mtx[0][1] +
tmp._mtx[1][1] * m._mtx[1][1] +
tmp._mtx[1][2] * m._mtx[2][1];
_mtx[1][2] = tmp._mtx[1][0] * m._mtx[0][2] +
tmp._mtx[1][1] * m._mtx[1][2] +
tmp._mtx[1][2] * m._mtx[2][2];
_mtx[2][0] = tmp._mtx[2][0] * m._mtx[0][0] +
tmp._mtx[2][1] * m._mtx[1][0] +
tmp._mtx[2][2] * m._mtx[2][0];
_mtx[2][1] = tmp._mtx[2][0] * m._mtx[0][1] +
tmp._mtx[2][1] * m._mtx[1][1] +
tmp._mtx[2][2] * m._mtx[2][1];
_mtx[2][2] = tmp._mtx[2][0] * m._mtx[0][2] +
tmp._mtx[2][1] * m._mtx[1][2] +
tmp._mtx[2][2] * m._mtx[2][2];
return *this;
}
/*
* Define multiplication between floating vector and double matrix.
*/
GfVec3f
operator *(const GfVec3f &vec, const GfMatrix3d &m)
{
return GfVec3f(
float(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[1][0] + vec[2] * m._mtx[2][0]),
float(vec[0] * m._mtx[0][1] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[2][1]),
float(vec[0] * m._mtx[0][2] + vec[1] * m._mtx[1][2] + vec[2] * m._mtx[2][2]));
}
GfVec3f
operator *(const GfMatrix3d& m, const GfVec3f &vec)
{
return GfVec3f(
float(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[0][1] + vec[2] * m._mtx[0][2]),
float(vec[0] * m._mtx[1][0] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[1][2]),
float(vec[0] * m._mtx[2][0] + vec[1] * m._mtx[2][1] + vec[2] * m._mtx[2][2]));
}
GfMatrix3d &
GfMatrix3d::SetScale(double s)
{
_mtx[0][0] = s; _mtx[0][1] = 0.0; _mtx[0][2] = 0.0;
_mtx[1][0] = 0.0; _mtx[1][1] = s; _mtx[1][2] = 0.0;
_mtx[2][0] = 0.0; _mtx[2][1] = 0.0; _mtx[2][2] = s;
return *this;
}
GfMatrix3d &
GfMatrix3d::SetRotate(const GfRotation &rot)
{
GfQuaternion quat = rot.GetQuaternion();
double r = quat.GetReal();
GfVec3d i = quat.GetImaginary();
_mtx[0][0] = 1.0 - 2.0 * (i[1] * i[1] + i[2] * i[2]);
_mtx[0][1] = 2.0 * (i[0] * i[1] + i[2] * r);
_mtx[0][2] = 2.0 * (i[2] * i[0] - i[1] * r);
_mtx[1][0] = 2.0 * (i[0] * i[1] - i[2] * r);
_mtx[1][1] = 1.0 - 2.0 * (i[2] * i[2] + i[0] * i[0]);
_mtx[1][2] = 2.0 * (i[1] * i[2] + i[0] * r);
_mtx[2][0] = 2.0 * (i[2] * i[0] + i[1] * r);
_mtx[2][1] = 2.0 * (i[1] * i[2] - i[0] * r);
_mtx[2][2] = 1.0 - 2.0 * (i[1] * i[1] + i[0] * i[0]);
return *this;
}
GfMatrix3d &
GfMatrix3d::SetScale(const GfVec3d &s)
{
_mtx[0][0] = s[0]; _mtx[0][1] = 0.0; _mtx[0][2] = 0.0;
_mtx[1][0] = 0.0; _mtx[1][1] = s[1]; _mtx[1][2] = 0.0;
_mtx[2][0] = 0.0; _mtx[2][1] = 0.0; _mtx[2][2] = s[2];
return *this;
}
GfQuaternion
GfMatrix3d::ExtractRotationQuaternion() const
{
// This was adapted from the (open source) Open Inventor
// SbRotation::SetValue(const SbMatrix &m)
int i;
// First, find largest diagonal in matrix:
if (_mtx[0][0] > _mtx[1][1])
i = (_mtx[0][0] > _mtx[2][2] ? 0 : 2);
else
i = (_mtx[1][1] > _mtx[2][2] ? 1 : 2);
GfVec3d im;
double r;
if (_mtx[0][0] + _mtx[1][1] + _mtx[2][2] > _mtx[i][i]) {
r = 0.5 * sqrt(_mtx[0][0] + _mtx[1][1] +
_mtx[2][2] + 1);
im.Set((_mtx[1][2] - _mtx[2][1]) / (4.0 * r),
(_mtx[2][0] - _mtx[0][2]) / (4.0 * r),
(_mtx[0][1] - _mtx[1][0]) / (4.0 * r));
}
else {
int j = (i + 1) % 3;
int k = (i + 2) % 3;
double q = 0.5 * sqrt(_mtx[i][i] - _mtx[j][j] -
_mtx[k][k] + 1);
im[i] = q;
im[j] = (_mtx[i][j] + _mtx[j][i]) / (4 * q);
im[k] = (_mtx[k][i] + _mtx[i][k]) / (4 * q);
r = (_mtx[j][k] - _mtx[k][j]) / (4 * q);
}
return GfQuaternion(GfClamp(r, -1.0, 1.0), im);
}
GfRotation
GfMatrix3d::ExtractRotation() const
{
return GfRotation( ExtractRotationQuaternion() );
}
GfVec3d
GfMatrix3d::DecomposeRotation(const GfVec3d &axis0,
const GfVec3d &axis1,
const GfVec3d &axis2) const
{
return ExtractRotation().Decompose(axis0, axis1, axis2);
}