forked from PixarAnimationStudios/OpenUSD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix3d.h
440 lines (366 loc) · 15.4 KB
/
matrix3d.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix3.template.h file to make changes.
#ifndef GF_MATRIX3D_H
#define GF_MATRIX3D_H
/// \file gf/matrix3d.h
/// \ingroup group_gf_LinearAlgebra
#include "pxr/base/gf/matrixData.h"
#include "pxr/base/gf/vec3d.h"
#include "pxr/base/gf/traits.h"
#include <boost/functional/hash.hpp>
#include <iosfwd>
#include <vector>
template <>
struct GfIsGfMatrix<class GfMatrix3d> { static const bool value = true; };
class GfMatrix3d;
class GfMatrix3f;
class GfRotation;
class GfQuaternion;
/// \class GfMatrix3d
/// \ingroup group_gf_LinearAlgebra
///
/// Stores a 3x3 matrix of \c double elements. A basic type.
///
/// Matrices are defined to be in row-major order, so <c>matrix[i][j]</c>
/// indexes the element in the \e i th row and the \e j th column.
///
/// <h3>3D Transformations</h3>
///
/// Three methods, SetRotate(), SetScale(), and ExtractRotation(), interpret
/// a GfMatrix3d as a 3D transformation. By convention, vectors are treated
/// primarily as row vectors, implying the following:
///
/// \li Transformation matrices are organized to deal with row
/// vectors, not column vectors.
/// \li Each of the Set() methods in this class completely rewrites the
/// matrix; for example, SetRotate() yields a matrix
/// which does nothing but rotate.
/// \li When multiplying two transformation matrices, the matrix
/// on the left applies a more local transformation to a row
/// vector. For example, if R represents a rotation
/// matrix and S represents a scale matrix, the
/// product R*S will rotate a row vector, then scale
/// it.
class GfMatrix3d
{
public:
typedef double ScalarType;
static const size_t numRows = 3;
static const size_t numColumns = 3;
/// Default constructor. Leaves the matrix component values undefined.
GfMatrix3d() {}
/// Constructor. Initializes the matrix from 9 independent
/// \c double values, specified in row-major order. For example,
/// parameter \e m10 specifies the value in row 1 and column 0.
GfMatrix3d(double m00, double m01, double m02,
double m10, double m11, double m12,
double m20, double m21, double m22) {
Set(m00, m01, m02,
m10, m11, m12,
m20, m21, m22);
}
/// Constructor. Initializes the matrix from a 3x3 array
/// of \c double values, specified in row-major order.
GfMatrix3d(const double m[3][3]) {
Set(m);
}
/// Constructor. Explicitly initializes the matrix to \e s times the
/// identity matrix.
explicit GfMatrix3d(double s) {
SetDiagonal(s);
}
/// This explicit constructor initializes the matrix to \p s times
/// the identity matrix.
explicit GfMatrix3d(int s) {
SetDiagonal(s);
}
/// Constructor. Explicitly initializes the matrix to diagonal form,
/// with the \e i th element on the diagonal set to <c>v[i]</c>.
explicit GfMatrix3d(const GfVec3d& v) {
SetDiagonal(v);
}
/// Constructor. Initialize the matrix from a vector of vectors of
/// double. The vector is expected to be 3x3. If it is
/// too big, only the first 3 rows and/or columns will be used.
/// If it is too small, uninitialized elements will be filled in with
/// the corresponding elements from an identity matrix.
///
explicit GfMatrix3d(const std::vector< std::vector<double> >& v);
/// Constructor. Initialize the matrix from a vector of vectors of
/// float. The vector is expected to be 3x3. If it is
/// too big, only the first 3 rows and/or columns will be used.
/// If it is too small, uninitialized elements will be filled in with
/// the corresponding elements from an identity matrix.
///
explicit GfMatrix3d(const std::vector< std::vector<float> >& v);
/// Constructor. Initialize matrix from rotation.
GfMatrix3d(const GfRotation& rot);
/// This explicit constructor converts a "float" matrix to a "double" matrix.
explicit GfMatrix3d(const class GfMatrix3f& m);
/// Sets a row of the matrix from a Vec3.
void SetRow(int i, const GfVec3d & v) {
_mtx[i][0] = v[0];
_mtx[i][1] = v[1];
_mtx[i][2] = v[2];
}
/// Sets a column of the matrix from a Vec3.
void SetColumn(int i, const GfVec3d & v) {
_mtx[0][i] = v[0];
_mtx[1][i] = v[1];
_mtx[2][i] = v[2];
}
/// Gets a row of the matrix as a Vec3.
GfVec3d GetRow(int i) const {
return GfVec3d(_mtx[i][0], _mtx[i][1], _mtx[i][2]);
}
/// Gets a column of the matrix as a Vec3.
GfVec3d GetColumn(int i) const {
return GfVec3d(_mtx[0][i], _mtx[1][i], _mtx[2][i]);
}
/// Sets the matrix from 9 independent \c double values,
/// specified in row-major order. For example, parameter \e m10 specifies
/// the value in row 1 and column 0.
GfMatrix3d& Set(double m00, double m01, double m02,
double m10, double m11, double m12,
double m20, double m21, double m22) {
_mtx[0][0] = m00; _mtx[0][1] = m01; _mtx[0][2] = m02;
_mtx[1][0] = m10; _mtx[1][1] = m11; _mtx[1][2] = m12;
_mtx[2][0] = m20; _mtx[2][1] = m21; _mtx[2][2] = m22;
return *this;
}
/// Sets the matrix from a 3x3 array of \c double
/// values, specified in row-major order.
GfMatrix3d& Set(const double m[3][3]) {
_mtx[0][0] = m[0][0];
_mtx[0][1] = m[0][1];
_mtx[0][2] = m[0][2];
_mtx[1][0] = m[1][0];
_mtx[1][1] = m[1][1];
_mtx[1][2] = m[1][2];
_mtx[2][0] = m[2][0];
_mtx[2][1] = m[2][1];
_mtx[2][2] = m[2][2];
return *this;
}
/// Sets the matrix to the identity matrix.
GfMatrix3d& SetIdentity() {
return SetDiagonal(1);
}
/// Sets the matrix to zero.
GfMatrix3d& SetZero() {
return SetDiagonal(0);
}
/// Sets the matrix to \e s times the identity matrix.
GfMatrix3d& SetDiagonal(double s);
/// Sets the matrix to have diagonal (<c>v[0], v[1], v[2]</c>).
GfMatrix3d& SetDiagonal(const GfVec3d&);
/// Fills a 3x3 array of \c double values with the values in
/// the matrix, specified in row-major order.
double* Get(double m[3][3]);
/// Returns vector components as an array of \c double values.
double* GetArray() {
return _mtx.GetData();
}
/// Returns vector components as a const array of \c double values.
const double* GetArray() const {
return _mtx.GetData();
}
/// Accesses an indexed row \e i of the matrix as an array of 3 \c
/// double values so that standard indexing (such as <c>m[0][1]</c>)
/// works correctly.
double* operator [](int i) { return _mtx[i]; }
/// Accesses an indexed row \e i of the matrix as an array of 3 \c
/// double values so that standard indexing (such as <c>m[0][1]</c>)
/// works correctly.
const double* operator [](int i) const { return _mtx[i]; }
/// Hash.
friend inline size_t hash_value(GfMatrix3d const &m) {
int nElems = 3 * 3;
size_t h = 0;
const double *p = m.GetArray();
while (nElems--)
boost::hash_combine(h, *p++);
return h;
}
/// Tests for element-wise matrix equality. All elements must match
/// exactly for matrices to be considered equal.
bool operator ==(const GfMatrix3d& m) const;
/// Tests for element-wise matrix equality. All elements must match
/// exactly for matrices to be considered equal.
bool operator ==(const GfMatrix3f& m) const;
/// Tests for element-wise matrix inequality. All elements must match
/// exactly for matrices to be considered equal.
bool operator !=(const GfMatrix3d& m) const {
return !(*this == m);
}
/// Tests for element-wise matrix inequality. All elements must match
/// exactly for matrices to be considered equal.
bool operator !=(const GfMatrix3f& m) const {
return !(*this == m);
}
/// Returns the transpose of the matrix.
GfMatrix3d GetTranspose() const;
/// Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
/// matrix is singular. (FLT_MAX is the largest value a \c float can have,
/// as defined by the system.) The matrix is considered singular if the
/// determinant is less than or equal to the optional parameter \e eps. If
/// \e det is non-null, <c>*det</c> is set to the determinant.
GfMatrix3d GetInverse(double* det = NULL, double eps = 0) const;
/// Returns the determinant of the matrix.
double GetDeterminant() const;
/// Makes the matrix orthonormal in place. This is an iterative method that
/// is much more stable than the previous cross/cross method. If the
/// iterative method does not converge, a warning is issued.
///
/// Returns true if the iteration converged, false otherwise. Leaves any
/// translation part of the matrix unchanged. If \a issueWarning is true,
/// this method will issue a warning if the iteration does not converge,
/// otherwise it will be silent.
bool Orthonormalize(bool issueWarning=true);
/// Returns an orthonormalized copy of the matrix.
GfMatrix3d GetOrthonormalized(bool issueWarning=true) const;
/// Returns the sign of the determinant of the matrix, i.e. 1 for a
/// right-handed matrix, -1 for a left-handed matrix, and 0 for a
/// singular matrix.
double GetHandedness() const;
/// Returns true if the vectors in the matrix form a right-handed
/// coordinate system.
bool IsRightHanded() const {
return GetHandedness() == 1.0;
}
/// Returns true if the vectors in matrix form a left-handed
/// coordinate system.
bool IsLeftHanded() const {
return GetHandedness() == -1.0;
}
/// Post-multiplies matrix \e m into this matrix.
GfMatrix3d& operator *=(const GfMatrix3d& m);
/// Multiplies the matrix by a double.
GfMatrix3d& operator *=(double);
/// Returns the product of a matrix and a double.
friend GfMatrix3d operator *(const GfMatrix3d& m1, double d)
{
GfMatrix3d m = m1;
return m *= d;
}
///
// Returns the product of a matrix and a double.
friend GfMatrix3d operator *(double d, const GfMatrix3d& m)
{
return m * d;
}
/// Adds matrix \e m to this matrix.
GfMatrix3d& operator +=(const GfMatrix3d& m);
/// Subtracts matrix \e m from this matrix.
GfMatrix3d& operator -=(const GfMatrix3d& m);
/// Returns the unary negation of matrix \e m.
friend GfMatrix3d operator -(const GfMatrix3d& m);
/// Adds matrix \e m2 to \e m1
friend GfMatrix3d operator +(const GfMatrix3d& m1, const GfMatrix3d& m2)
{
GfMatrix3d tmp(m1);
tmp += m2;
return tmp;
}
/// Subtracts matrix \e m2 from \e m1.
friend GfMatrix3d operator -(const GfMatrix3d& m1, const GfMatrix3d& m2)
{
GfMatrix3d tmp(m1);
tmp -= m2;
return tmp;
}
/// Multiplies matrix \e m1 by \e m2.
friend GfMatrix3d operator *(const GfMatrix3d& m1, const GfMatrix3d& m2)
{
GfMatrix3d tmp(m1);
tmp *= m2;
return tmp;
}
/// Divides matrix \e m1 by \e m2 (that is, <c>m1 * inv(m2)</c>).
friend GfMatrix3d operator /(const GfMatrix3d& m1, const GfMatrix3d& m2)
{
return(m1 * m2.GetInverse());
}
/// Returns the product of a matrix \e m and a column vector \e vec.
friend inline GfVec3d operator *(const GfMatrix3d& m, const GfVec3d& vec) {
return GfVec3d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[0][1] + vec[2] * m._mtx[0][2],
vec[0] * m._mtx[1][0] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[1][2],
vec[0] * m._mtx[2][0] + vec[1] * m._mtx[2][1] + vec[2] * m._mtx[2][2]);
}
/// Returns the product of row vector \e vec and a matrix \e m.
friend inline GfVec3d operator *(const GfVec3d &vec, const GfMatrix3d& m) {
return GfVec3d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[1][0] + vec[2] * m._mtx[2][0],
vec[0] * m._mtx[0][1] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[2][1],
vec[0] * m._mtx[0][2] + vec[1] * m._mtx[1][2] + vec[2] * m._mtx[2][2]);
}
/// Returns the product of a matrix \e m and a column vector \e vec.
/// Note that the return type is a \c GfVec3f.
friend GfVec3f operator *(const GfMatrix3d& m, const GfVec3f& vec);
/// Returns the product of row vector \e vec and a matrix \e m.
/// Note that the return type is a \c GfVec3f.
friend GfVec3f operator *(const GfVec3f &vec, const GfMatrix3d& m);
/// Sets matrix to specify a uniform scaling by \e scaleFactor.
GfMatrix3d& SetScale(double scaleFactor);
/// \name 3D Transformation Utilities
/// @{
/// Sets the matrix to specify a rotation equivalent to \e rot.
GfMatrix3d& SetRotate(const GfRotation &rot);
/// Sets the matrix to specify a nonuniform scaling in x, y, and z by
/// the factors in vector \e scaleFactors.
GfMatrix3d& SetScale(const GfVec3d &scaleFactors);
/// Returns the rotation corresponding to this matrix. This works
/// well only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfRotation ExtractRotation() const;
/// Decompose the rotation corresponding to this matrix about 3
/// orthogonal axes. If the axes are not orthogonal, warnings
/// will be spewed.
///
/// This is a convenience method that is equivalent to calling
/// ExtractRotation().Decompose().
GfVec3d DecomposeRotation(const GfVec3d &axis0,
const GfVec3d &axis1,
const GfVec3d &axis2 ) const;
/// Returns the quaternion corresponding to this matrix. This works
/// well only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfQuaternion ExtractRotationQuaternion() const;
/// @}
private:
/// Matrix storage, in row-major order.
GfMatrixData<double, 3, 3> _mtx;
// Friend declarations
friend class GfMatrix3f;
};
/// Output a GfMatrix3d
/// \ingroup group_gf_DebuggingOutput
std::ostream& operator<<(std::ostream &, GfMatrix3d const &);
#endif // GF_MATRIX3D_H