forked from PixarAnimationStudios/OpenUSD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix4.template.h
353 lines (310 loc) · 15.4 KB
/
matrix4.template.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix4.template.h file to make changes.
{% extends "matrix.template.h" %}
{% block includes %}
#include "pxr/base/gf/homogeneous.h"
#include "pxr/base/gf/limits.h"
#include "pxr/base/gf/math.h"
#include "pxr/base/gf/vec3{{ SCL[0] }}.h"
{% endblock %}
{% block forwardDeclarations %}
{% if SCL == 'double' -%}
class GfRotation;
{% endif %}
class GfMatrix3{{ SCL[0] }};
{% endblock %}
{% block classDocs %}
/// <h3>3D Transformations</h3>
///
/// The following methods interpret a {{ MAT }} as a 3D
/// transformation: SetRotate(), SetScale(), SetTranslate(), SetLookAt(),
/// Factor(), ExtractTranslation(), ExtractRotation(), Transform(), TransformDir().
/// By convention, vectors are treated primarily as row vectors,
/// implying the following:
/// \li Transformation matrices are organized to deal with row
/// vectors, not column vectors. For example, the last row of a matrix
/// contains the translation amounts.
/// \li Each of the Set() methods below completely rewrites the
/// matrix; for example, SetTranslate() yields a matrix
/// which does nothing but translate.
/// \li When multiplying two transformation matrices, the matrix
/// on the left applies a more local transformation to a row
/// vector. For example, if R represents a rotation
/// matrix and T represents a translation matrix, the
/// product R*T will rotate a row vector, then translate
/// it.
{% endblock classDocs %}
{% block customConstructors %}
{% for S in SCALARS %}
/// Constructor. Initialize the matrix from {{ DIM }} row vectors of
/// {{ S }}. Each vector is expected to length {{ DIM }}. If it is too
/// big, only the first {{ DIM }} items will be used. If it is too small,
/// uninitialized elements will be filled in with the
/// corresponding elements from an identity matrix.
///
explicit {{ MAT }}(const std::vector<{{ S }}>& r0,
const std::vector<{{ S }}>& r1,
const std::vector<{{ S }}>& r2,
const std::vector<{{ S }}>& r3);
{% endfor %}
{% if SCL == 'double' %}
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
{{ MAT }}(const GfRotation& rotate,
const GfVec3{{ SCL[0] }}& translate);
{% endif %}
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
{{ MAT }}(const GfMatrix3{{ SCL[0] }}& rotmx,
const GfVec3{{ SCL[0] }}& translate);
{% endblock customConstructors %}
{% block customFunctions %}
/// Sets a row of the matrix from a Vec3.
/// The fourth element of the row is ignored.
void SetRow3(int i, const GfVec3{{ SCL[0] }} & v) {
_mtx[i][0] = v[0];
_mtx[i][1] = v[1];
_mtx[i][2] = v[2];
}
/// Gets a row of the matrix as a Vec3.
GfVec3{{ SCL[0] }} GetRow3(int i) const {
return GfVec3{{ SCL[0] }}(_mtx[i][0], _mtx[i][1], _mtx[i][2]);
}
/// Returns the determinant of the upper 3x3 matrix. This method is useful
/// when the matrix describes a linear transformation such as a rotation or
/// scale because the other values in the 4x4 matrix are not important.
double GetDeterminant3() const {
return _GetDeterminant3(0, 1, 2, 0, 1, 2);
}
/// Returns true, if the row vectors of the upper 3x3 matrix form an
/// orthogonal basis. Note they do not have to be unit length for this
/// test to return true.
bool HasOrthogonalRows3() const {
// XXX Should add GfAreOrthogonal(v0, v1, v2) (which also
// GfRotation::Decompose() could use).
GfVec3{{ SCL[0] }} axis0(GetRow3(0)), axis1(GetRow3(1)), axis2(GetRow3(2));
return (GfAbs(GfDot(axis0, axis1)) < GF_MIN_ORTHO_TOLERANCE and
GfAbs(GfDot(axis0, axis2)) < GF_MIN_ORTHO_TOLERANCE and
GfAbs(GfDot(axis1, axis2)) < GF_MIN_ORTHO_TOLERANCE);
}
/// Makes the matrix orthonormal in place. This is an iterative method
/// that is much more stable than the previous cross/cross method. If the
/// iterative method does not converge, a warning is issued.
///
/// Returns true if the iteration converged, false otherwise. Leaves any
/// translation part of the matrix unchanged. If \a issueWarning is true,
/// this method will issue a warning if the iteration does not converge,
/// otherwise it will be silent.
bool Orthonormalize(bool issueWarning=true);
/// Returns an orthonormalized copy of the matrix.
{{ MAT }} GetOrthonormalized(bool issueWarning=true) const;
/// Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1
/// for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
/// singular matrix.
double GetHandedness() const;
/// Returns true if the vectors in the upper 3x3 matrix form a
/// right-handed coordinate system.
bool IsRightHanded() const {
return GetHandedness() == 1.0;
}
/// Returns true if the vectors in the upper 3x3 matrix form a left-handed
/// coordinate system.
bool IsLeftHanded() const {
return GetHandedness() == -1.0;
}
{% endblock customFunctions %}
{% block customXformFunctions %}
/// Sets matrix to specify a uniform scaling by \e scaleFactor.
{{ MAT }}& SetScale({{ SCL }} scaleFactor);
/// Returns the matrix with any scaling or shearing removed,
/// leaving only the rotation and translation.
/// If the matrix cannot be decomposed, returns the original matrix.
{{ MAT }} RemoveScaleShear() const;
{% if SCL == 'double' %}
/// \name 3D Transformation Utilities
/// @{
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// and clears the translation.
{{ MAT }}& SetRotate(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// without clearing the translation.
{{ MAT }}& SetRotateOnly(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// and clears the translation.
{{ MAT }}& SetRotate(const GfMatrix3d &mx);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// without clearing the translation.
{{ MAT }}& SetRotateOnly(const GfMatrix3d &mx);
/// Sets the matrix to specify a nonuniform scaling in x, y, and z by
/// the factors in vector \e scaleFactors.
{{ MAT }}& SetScale(const GfVec3d &scaleFactors);
/// Sets matrix to specify a translation by the vector \e trans,
/// and clears the rotation.
{{ MAT }}& SetTranslate(const GfVec3d &trans);
/// Sets matrix to specify a translation by the vector \e trans,
/// without clearing the rotation.
{{ MAT }}& SetTranslateOnly(const GfVec3d &t);
/// Sets matrix to specify a rotation by \e rotate and a
/// translation by \e translate.
{{ MAT }}& SetTransform(const GfRotation& rotate,
const GfVec3d& translate);
/// Sets matrix to specify a rotation by \e rotmx and a
/// translation by \e translate.
{{ MAT }}& SetTransform(const GfMatrix3d& rotmx,
const GfVec3d& translate);
/// Sets the matrix to specify a viewing matrix from parameters
/// similar to those used by <c>gluLookAt(3G)</c>. \e eyePoint
/// represents the eye point in world space. \e centerPoint
/// represents the world-space center of attention. \e upDirection
/// is a vector indicating which way is up.
{{ MAT }}& SetLookAt(const GfVec3d &eyePoint,
const GfVec3d ¢erPoint,
const GfVec3d &upDirection);
/// Sets the matrix to specify a viewing matrix from a world-space
/// \e eyePoint and a world-space rotation that rigidly rotates the
/// orientation from its canonical frame, which is defined to be
/// looking along the <c>-z</c> axis with the <c>+y</c> axis as the up
/// direction.
{{ MAT }}& SetLookAt(const GfVec3d &eyePoint,
const GfRotation &orientation);
/// Factors the matrix into 5 components:
/// \li <c>\e M = r * s * -r * u * t</c>
/// where
/// \li \e t is a translation.
/// \li \e u and \e r are rotations, and \e -r is the transpose
/// (inverse) of \e r. The \e u matrix may contain shear
/// information.
/// \li \e s is a scale.
/// Any projection information could be returned in matrix \e p,
/// but currently p is never modified.
///
/// Returns \c false if the matrix is singular (as determined by \e eps).
/// In that case, any zero scales in \e s are clamped to \e eps
/// to allow computation of \e u.
bool Factor({{ MAT }}* r, GfVec3d* s, {{ MAT }}* u,
GfVec3d* t, {{ MAT }}* p,
double eps = GF_MIN_VECTOR_LENGTH) const;
/// Returns the translation part of the matrix, defined as the first three
/// elements of the last row.
GfVec3d ExtractTranslation() const {
return GfVec3d(_mtx[3][0], _mtx[3][1], _mtx[3][2]);
}
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfRotation ExtractRotation() const;
/// Decompose the rotation corresponding to this matrix about 3 orthogonal
/// axes. If the axes are not orthogonal, warnings will be spewed.
///
/// This is a convenience method that is equivalent to calling
/// ExtractRotation().Decompose().
GfVec3d DecomposeRotation(const GfVec3d &axis0,
const GfVec3d &axis1,
const GfVec3d &axis2) const;
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfMatrix3d ExtractRotationMatrix() const;
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1.
GfVec3d Transform(const GfVec3d &vec) const {
return GfProject(GfVec4d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][3]", sep=" + ", num=3) }} + _mtx[3][3]));
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1. This is an overloaded method; it differs from the other version
/// in that it returns a different value type.
GfVec3f Transform(const GfVec3f &vec) const {
return GfVec3f(GfProject(GfVec4d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][3]", sep=" + ", num=3) }} + _mtx[3][3])));
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0.
GfVec3d TransformDir(const GfVec3d &vec) const {
return GfVec3d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }});
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0. This is an
/// overloaded method; it differs from the other version in that it
/// returns a different value type.
GfVec3f TransformDir(const GfVec3f &vec) const {
return GfVec3f(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }},
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }});
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3d TransformAffine(const GfVec3d &vec) const {
return GfVec3d(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2]);
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3f TransformAffine(const GfVec3f &vec) const {
return GfVec3f(
{{ LIST("vec[%(i)s] * _mtx[%(i)s][0]", sep=" + ", num=3) }} + _mtx[3][0],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][1]", sep=" + ", num=3) }} + _mtx[3][1],
{{ LIST("vec[%(i)s] * _mtx[%(i)s][2]", sep=" + ", num=3) }} + _mtx[3][2]);
}
/// @}
{% endif %}
private:
/// Returns the determinant of the 3x3 submatrix specified by the three
/// given row and column indices (0-3 for each).
double _GetDeterminant3(size_t row1, size_t row2, size_t row3,
size_t col1, size_t col2, size_t col3) const;
{% if SCL == 'double' %}
/// Diagonalizes the upper 3x3 matrix of a matrix known to be symmetric.
void _Jacobi3(GfVec3d *eigenvalues, GfVec3d eigenvectors[3]) const;
{% endif %}
{% endblock customXformFunctions %}