forked from PixarAnimationStudios/OpenUSD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix4d.h
668 lines (570 loc) · 26.8 KB
/
matrix4d.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//
// Copyright 2016 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
////////////////////////////////////////////////////////////////////////
// This file is generated by a script. Do not edit directly. Edit the
// matrix4.template.h file to make changes.
#ifndef GF_MATRIX4D_H
#define GF_MATRIX4D_H
/// \file gf/matrix4d.h
/// \ingroup group_gf_LinearAlgebra
#include "pxr/base/gf/matrixData.h"
#include "pxr/base/gf/vec4d.h"
#include "pxr/base/gf/traits.h"
#include "pxr/base/gf/homogeneous.h"
#include "pxr/base/gf/limits.h"
#include "pxr/base/gf/math.h"
#include "pxr/base/gf/vec3d.h"
#include <boost/functional/hash.hpp>
#include <iosfwd>
#include <vector>
template <>
struct GfIsGfMatrix<class GfMatrix4d> { static const bool value = true; };
class GfMatrix4d;
class GfMatrix4f;
class GfRotation;
class GfMatrix3d;
/// \class GfMatrix4d
/// \ingroup group_gf_LinearAlgebra
///
/// Stores a 4x4 matrix of \c double elements. A basic type.
///
/// Matrices are defined to be in row-major order, so <c>matrix[i][j]</c>
/// indexes the element in the \e i th row and the \e j th column.
///
/// <h3>3D Transformations</h3>
///
/// The following methods interpret a GfMatrix4d as a 3D
/// transformation: SetRotate(), SetScale(), SetTranslate(), SetLookAt(),
/// Factor(), ExtractTranslation(), ExtractRotation(), Transform(), TransformDir().
/// By convention, vectors are treated primarily as row vectors,
/// implying the following:
/// \li Transformation matrices are organized to deal with row
/// vectors, not column vectors. For example, the last row of a matrix
/// contains the translation amounts.
/// \li Each of the Set() methods below completely rewrites the
/// matrix; for example, SetTranslate() yields a matrix
/// which does nothing but translate.
/// \li When multiplying two transformation matrices, the matrix
/// on the left applies a more local transformation to a row
/// vector. For example, if R represents a rotation
/// matrix and T represents a translation matrix, the
/// product R*T will rotate a row vector, then translate
/// it.
class GfMatrix4d
{
public:
typedef double ScalarType;
static const size_t numRows = 4;
static const size_t numColumns = 4;
/// Default constructor. Leaves the matrix component values undefined.
GfMatrix4d() {}
/// Constructor. Initializes the matrix from 16 independent
/// \c double values, specified in row-major order. For example,
/// parameter \e m10 specifies the value in row 1 and column 0.
GfMatrix4d(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13,
double m20, double m21, double m22, double m23,
double m30, double m31, double m32, double m33) {
Set(m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33);
}
/// Constructor. Initializes the matrix from a 4x4 array
/// of \c double values, specified in row-major order.
GfMatrix4d(const double m[4][4]) {
Set(m);
}
/// Constructor. Explicitly initializes the matrix to \e s times the
/// identity matrix.
explicit GfMatrix4d(double s) {
SetDiagonal(s);
}
/// Constructor. Explicitly initializes the matrix to diagonal form,
/// with the \e i th element on the diagonal set to <c>v[i]</c>.
explicit GfMatrix4d(const GfVec4d& v) {
SetDiagonal(v);
}
/// Constructor. Initialize the matrix from a vector of vectors of
/// double. The vector is expected to be 4x4. If it is
/// too big, only the first 4 rows and/or columns will be used.
/// If it is too small, uninitialized elements will be filled in with
/// the corresponding elements from an identity matrix.
///
explicit GfMatrix4d(const std::vector< std::vector<double> >& v);
/// Constructor. Initialize the matrix from a vector of vectors of
/// float. The vector is expected to be 4x4. If it is
/// too big, only the first 4 rows and/or columns will be used.
/// If it is too small, uninitialized elements will be filled in with
/// the corresponding elements from an identity matrix.
///
explicit GfMatrix4d(const std::vector< std::vector<float> >& v);
/// Constructor. Initialize the matrix from 4 row vectors of
/// double. Each vector is expected to length 4. If it is too
/// big, only the first 4 items will be used. If it is too small,
/// uninitialized elements will be filled in with the
/// corresponding elements from an identity matrix.
///
explicit GfMatrix4d(const std::vector<double>& r0,
const std::vector<double>& r1,
const std::vector<double>& r2,
const std::vector<double>& r3);
/// Constructor. Initialize the matrix from 4 row vectors of
/// float. Each vector is expected to length 4. If it is too
/// big, only the first 4 items will be used. If it is too small,
/// uninitialized elements will be filled in with the
/// corresponding elements from an identity matrix.
///
explicit GfMatrix4d(const std::vector<float>& r0,
const std::vector<float>& r1,
const std::vector<float>& r2,
const std::vector<float>& r3);
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
GfMatrix4d(const GfRotation& rotate,
const GfVec3d& translate);
/// Constructor. Initializes a transformation matrix to perform the
/// indicated rotation and translation.
GfMatrix4d(const GfMatrix3d& rotmx,
const GfVec3d& translate);
/// This explicit constructor converts a "float" matrix to a "double" matrix.
explicit GfMatrix4d(const class GfMatrix4f& m);
/// Sets a row of the matrix from a Vec4.
void SetRow(int i, const GfVec4d & v) {
_mtx[i][0] = v[0];
_mtx[i][1] = v[1];
_mtx[i][2] = v[2];
_mtx[i][3] = v[3];
}
/// Sets a column of the matrix from a Vec4.
void SetColumn(int i, const GfVec4d & v) {
_mtx[0][i] = v[0];
_mtx[1][i] = v[1];
_mtx[2][i] = v[2];
_mtx[3][i] = v[3];
}
/// Gets a row of the matrix as a Vec4.
GfVec4d GetRow(int i) const {
return GfVec4d(_mtx[i][0], _mtx[i][1], _mtx[i][2], _mtx[i][3]);
}
/// Gets a column of the matrix as a Vec4.
GfVec4d GetColumn(int i) const {
return GfVec4d(_mtx[0][i], _mtx[1][i], _mtx[2][i], _mtx[3][i]);
}
/// Sets the matrix from 16 independent \c double values,
/// specified in row-major order. For example, parameter \e m10 specifies
/// the value in row 1 and column 0.
GfMatrix4d& Set(double m00, double m01, double m02, double m03,
double m10, double m11, double m12, double m13,
double m20, double m21, double m22, double m23,
double m30, double m31, double m32, double m33) {
_mtx[0][0] = m00; _mtx[0][1] = m01; _mtx[0][2] = m02; _mtx[0][3] = m03;
_mtx[1][0] = m10; _mtx[1][1] = m11; _mtx[1][2] = m12; _mtx[1][3] = m13;
_mtx[2][0] = m20; _mtx[2][1] = m21; _mtx[2][2] = m22; _mtx[2][3] = m23;
_mtx[3][0] = m30; _mtx[3][1] = m31; _mtx[3][2] = m32; _mtx[3][3] = m33;
return *this;
}
/// Sets the matrix from a 4x4 array of \c double
/// values, specified in row-major order.
GfMatrix4d& Set(const double m[4][4]) {
_mtx[0][0] = m[0][0];
_mtx[0][1] = m[0][1];
_mtx[0][2] = m[0][2];
_mtx[0][3] = m[0][3];
_mtx[1][0] = m[1][0];
_mtx[1][1] = m[1][1];
_mtx[1][2] = m[1][2];
_mtx[1][3] = m[1][3];
_mtx[2][0] = m[2][0];
_mtx[2][1] = m[2][1];
_mtx[2][2] = m[2][2];
_mtx[2][3] = m[2][3];
_mtx[3][0] = m[3][0];
_mtx[3][1] = m[3][1];
_mtx[3][2] = m[3][2];
_mtx[3][3] = m[3][3];
return *this;
}
/// Sets the matrix to the identity matrix.
GfMatrix4d& SetIdentity() {
return SetDiagonal(1);
}
/// Sets the matrix to zero.
GfMatrix4d& SetZero() {
return SetDiagonal(0);
}
/// Sets the matrix to \e s times the identity matrix.
GfMatrix4d& SetDiagonal(double s);
/// Sets the matrix to have diagonal (<c>v[0], v[1], v[2], v[3]</c>).
GfMatrix4d& SetDiagonal(const GfVec4d&);
/// Fills a 4x4 array of \c double values with the values in
/// the matrix, specified in row-major order.
double* Get(double m[4][4]);
/// Returns vector components as an array of \c double values.
double* GetArray() {
return _mtx.GetData();
}
/// Returns vector components as a const array of \c double values.
const double* GetArray() const {
return _mtx.GetData();
}
/// Accesses an indexed row \e i of the matrix as an array of 4 \c
/// double values so that standard indexing (such as <c>m[0][1]</c>)
/// works correctly.
double* operator [](int i) { return _mtx[i]; }
/// Accesses an indexed row \e i of the matrix as an array of 4 \c
/// double values so that standard indexing (such as <c>m[0][1]</c>)
/// works correctly.
const double* operator [](int i) const { return _mtx[i]; }
/// Hash.
friend inline size_t hash_value(GfMatrix4d const &m) {
int nElems = 4 * 4;
size_t h = 0;
const double *p = m.GetArray();
while (nElems--)
boost::hash_combine(h, *p++);
return h;
}
/// Tests for element-wise matrix equality. All elements must match
/// exactly for matrices to be considered equal.
bool operator ==(const GfMatrix4d& m) const;
/// Tests for element-wise matrix equality. All elements must match
/// exactly for matrices to be considered equal.
bool operator ==(const GfMatrix4f& m) const;
/// Tests for element-wise matrix inequality. All elements must match
/// exactly for matrices to be considered equal.
bool operator !=(const GfMatrix4d& m) const {
return !(*this == m);
}
/// Tests for element-wise matrix inequality. All elements must match
/// exactly for matrices to be considered equal.
bool operator !=(const GfMatrix4f& m) const {
return !(*this == m);
}
/// Returns the transpose of the matrix.
GfMatrix4d GetTranspose() const;
/// Returns the inverse of the matrix, or FLT_MAX * SetIdentity() if the
/// matrix is singular. (FLT_MAX is the largest value a \c float can have,
/// as defined by the system.) The matrix is considered singular if the
/// determinant is less than or equal to the optional parameter \e eps. If
/// \e det is non-null, <c>*det</c> is set to the determinant.
GfMatrix4d GetInverse(double* det = NULL, double eps = 0) const;
/// Returns the determinant of the matrix.
double GetDeterminant() const;
/// Sets a row of the matrix from a Vec3.
/// The fourth element of the row is ignored.
void SetRow3(int i, const GfVec3d & v) {
_mtx[i][0] = v[0];
_mtx[i][1] = v[1];
_mtx[i][2] = v[2];
}
/// Gets a row of the matrix as a Vec3.
GfVec3d GetRow3(int i) const {
return GfVec3d(_mtx[i][0], _mtx[i][1], _mtx[i][2]);
}
/// Returns the determinant of the upper 3x3 matrix. This method is useful
/// when the matrix describes a linear transformation such as a rotation or
/// scale because the other values in the 4x4 matrix are not important.
double GetDeterminant3() const {
return _GetDeterminant3(0, 1, 2, 0, 1, 2);
}
/// Returns true, if the row vectors of the upper 3x3 matrix form an
/// orthogonal basis. Note they do not have to be unit length for this
/// test to return true.
bool HasOrthogonalRows3() const {
// XXX Should add GfAreOrthogonal(v0, v1, v2) (which also
// GfRotation::Decompose() could use).
GfVec3d axis0(GetRow3(0)), axis1(GetRow3(1)), axis2(GetRow3(2));
return (GfAbs(GfDot(axis0, axis1)) < GF_MIN_ORTHO_TOLERANCE and
GfAbs(GfDot(axis0, axis2)) < GF_MIN_ORTHO_TOLERANCE and
GfAbs(GfDot(axis1, axis2)) < GF_MIN_ORTHO_TOLERANCE);
}
/// Makes the matrix orthonormal in place. This is an iterative method
/// that is much more stable than the previous cross/cross method. If the
/// iterative method does not converge, a warning is issued.
///
/// Returns true if the iteration converged, false otherwise. Leaves any
/// translation part of the matrix unchanged. If \a issueWarning is true,
/// this method will issue a warning if the iteration does not converge,
/// otherwise it will be silent.
bool Orthonormalize(bool issueWarning=true);
/// Returns an orthonormalized copy of the matrix.
GfMatrix4d GetOrthonormalized(bool issueWarning=true) const;
/// Returns the sign of the determinant of the upper 3x3 matrix, i.e. 1
/// for a right-handed matrix, -1 for a left-handed matrix, and 0 for a
/// singular matrix.
double GetHandedness() const;
/// Returns true if the vectors in the upper 3x3 matrix form a
/// right-handed coordinate system.
bool IsRightHanded() const {
return GetHandedness() == 1.0;
}
/// Returns true if the vectors in the upper 3x3 matrix form a left-handed
/// coordinate system.
bool IsLeftHanded() const {
return GetHandedness() == -1.0;
}
/// Post-multiplies matrix \e m into this matrix.
GfMatrix4d& operator *=(const GfMatrix4d& m);
/// Multiplies the matrix by a double.
GfMatrix4d& operator *=(double);
/// Returns the product of a matrix and a double.
friend GfMatrix4d operator *(const GfMatrix4d& m1, double d)
{
GfMatrix4d m = m1;
return m *= d;
}
///
// Returns the product of a matrix and a double.
friend GfMatrix4d operator *(double d, const GfMatrix4d& m)
{
return m * d;
}
/// Adds matrix \e m to this matrix.
GfMatrix4d& operator +=(const GfMatrix4d& m);
/// Subtracts matrix \e m from this matrix.
GfMatrix4d& operator -=(const GfMatrix4d& m);
/// Returns the unary negation of matrix \e m.
friend GfMatrix4d operator -(const GfMatrix4d& m);
/// Adds matrix \e m2 to \e m1
friend GfMatrix4d operator +(const GfMatrix4d& m1, const GfMatrix4d& m2)
{
GfMatrix4d tmp(m1);
tmp += m2;
return tmp;
}
/// Subtracts matrix \e m2 from \e m1.
friend GfMatrix4d operator -(const GfMatrix4d& m1, const GfMatrix4d& m2)
{
GfMatrix4d tmp(m1);
tmp -= m2;
return tmp;
}
/// Multiplies matrix \e m1 by \e m2.
friend GfMatrix4d operator *(const GfMatrix4d& m1, const GfMatrix4d& m2)
{
GfMatrix4d tmp(m1);
tmp *= m2;
return tmp;
}
/// Divides matrix \e m1 by \e m2 (that is, <c>m1 * inv(m2)</c>).
friend GfMatrix4d operator /(const GfMatrix4d& m1, const GfMatrix4d& m2)
{
return(m1 * m2.GetInverse());
}
/// Returns the product of a matrix \e m and a column vector \e vec.
friend inline GfVec4d operator *(const GfMatrix4d& m, const GfVec4d& vec) {
return GfVec4d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[0][1] + vec[2] * m._mtx[0][2] + vec[3] * m._mtx[0][3],
vec[0] * m._mtx[1][0] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[1][2] + vec[3] * m._mtx[1][3],
vec[0] * m._mtx[2][0] + vec[1] * m._mtx[2][1] + vec[2] * m._mtx[2][2] + vec[3] * m._mtx[2][3],
vec[0] * m._mtx[3][0] + vec[1] * m._mtx[3][1] + vec[2] * m._mtx[3][2] + vec[3] * m._mtx[3][3]);
}
/// Returns the product of row vector \e vec and a matrix \e m.
friend inline GfVec4d operator *(const GfVec4d &vec, const GfMatrix4d& m) {
return GfVec4d(vec[0] * m._mtx[0][0] + vec[1] * m._mtx[1][0] + vec[2] * m._mtx[2][0] + vec[3] * m._mtx[3][0],
vec[0] * m._mtx[0][1] + vec[1] * m._mtx[1][1] + vec[2] * m._mtx[2][1] + vec[3] * m._mtx[3][1],
vec[0] * m._mtx[0][2] + vec[1] * m._mtx[1][2] + vec[2] * m._mtx[2][2] + vec[3] * m._mtx[3][2],
vec[0] * m._mtx[0][3] + vec[1] * m._mtx[1][3] + vec[2] * m._mtx[2][3] + vec[3] * m._mtx[3][3]);
}
/// Returns the product of a matrix \e m and a column vector \e vec.
/// Note that the return type is a \c GfVec4f.
friend GfVec4f operator *(const GfMatrix4d& m, const GfVec4f& vec);
/// Returns the product of row vector \e vec and a matrix \e m.
/// Note that the return type is a \c GfVec4f.
friend GfVec4f operator *(const GfVec4f &vec, const GfMatrix4d& m);
/// Sets matrix to specify a uniform scaling by \e scaleFactor.
GfMatrix4d& SetScale(double scaleFactor);
/// Returns the matrix with any scaling or shearing removed,
/// leaving only the rotation and translation.
/// If the matrix cannot be decomposed, returns the original matrix.
GfMatrix4d RemoveScaleShear() const;
/// \name 3D Transformation Utilities
/// @{
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// and clears the translation.
GfMatrix4d& SetRotate(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e rot,
/// without clearing the translation.
GfMatrix4d& SetRotateOnly(const GfRotation &rot);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// and clears the translation.
GfMatrix4d& SetRotate(const GfMatrix3d &mx);
/// Sets the matrix to specify a rotation equivalent to \e mx,
/// without clearing the translation.
GfMatrix4d& SetRotateOnly(const GfMatrix3d &mx);
/// Sets the matrix to specify a nonuniform scaling in x, y, and z by
/// the factors in vector \e scaleFactors.
GfMatrix4d& SetScale(const GfVec3d &scaleFactors);
/// Sets matrix to specify a translation by the vector \e trans,
/// and clears the rotation.
GfMatrix4d& SetTranslate(const GfVec3d &trans);
/// Sets matrix to specify a translation by the vector \e trans,
/// without clearing the rotation.
GfMatrix4d& SetTranslateOnly(const GfVec3d &t);
/// Sets matrix to specify a rotation by \e rotate and a
/// translation by \e translate.
GfMatrix4d& SetTransform(const GfRotation& rotate,
const GfVec3d& translate);
/// Sets matrix to specify a rotation by \e rotmx and a
/// translation by \e translate.
GfMatrix4d& SetTransform(const GfMatrix3d& rotmx,
const GfVec3d& translate);
/// Sets the matrix to specify a viewing matrix from parameters
/// similar to those used by <c>gluLookAt(3G)</c>. \e eyePoint
/// represents the eye point in world space. \e centerPoint
/// represents the world-space center of attention. \e upDirection
/// is a vector indicating which way is up.
GfMatrix4d& SetLookAt(const GfVec3d &eyePoint,
const GfVec3d ¢erPoint,
const GfVec3d &upDirection);
/// Sets the matrix to specify a viewing matrix from a world-space
/// \e eyePoint and a world-space rotation that rigidly rotates the
/// orientation from its canonical frame, which is defined to be
/// looking along the <c>-z</c> axis with the <c>+y</c> axis as the up
/// direction.
GfMatrix4d& SetLookAt(const GfVec3d &eyePoint,
const GfRotation &orientation);
/// Factors the matrix into 5 components:
/// \li <c>\e M = r * s * -r * u * t</c>
/// where
/// \li \e t is a translation.
/// \li \e u and \e r are rotations, and \e -r is the transpose
/// (inverse) of \e r. The \e u matrix may contain shear
/// information.
/// \li \e s is a scale.
/// Any projection information could be returned in matrix \e p,
/// but currently p is never modified.
///
/// Returns \c false if the matrix is singular (as determined by \e eps).
/// In that case, any zero scales in \e s are clamped to \e eps
/// to allow computation of \e u.
bool Factor(GfMatrix4d* r, GfVec3d* s, GfMatrix4d* u,
GfVec3d* t, GfMatrix4d* p,
double eps = GF_MIN_VECTOR_LENGTH) const;
/// Returns the translation part of the matrix, defined as the first three
/// elements of the last row.
GfVec3d ExtractTranslation() const {
return GfVec3d(_mtx[3][0], _mtx[3][1], _mtx[3][2]);
}
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfRotation ExtractRotation() const;
/// Decompose the rotation corresponding to this matrix about 3 orthogonal
/// axes. If the axes are not orthogonal, warnings will be spewed.
///
/// This is a convenience method that is equivalent to calling
/// ExtractRotation().Decompose().
GfVec3d DecomposeRotation(const GfVec3d &axis0,
const GfVec3d &axis1,
const GfVec3d &axis2) const;
/// Returns the rotation corresponding to this matrix. This works well
/// only if the matrix represents a rotation.
///
/// For good results, consider calling Orthonormalize() before calling
/// this method.
GfMatrix3d ExtractRotationMatrix() const;
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1.
GfVec3d Transform(const GfVec3d &vec) const {
return GfProject(GfVec4d(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0] + _mtx[3][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1] + _mtx[3][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2] + _mtx[3][2],
vec[0] * _mtx[0][3] + vec[1] * _mtx[1][3] + vec[2] * _mtx[2][3] + _mtx[3][3]));
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1. This is an overloaded method; it differs from the other version
/// in that it returns a different value type.
GfVec3f Transform(const GfVec3f &vec) const {
return GfVec3f(GfProject(GfVec4d(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0] + _mtx[3][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1] + _mtx[3][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2] + _mtx[3][2],
vec[0] * _mtx[0][3] + vec[1] * _mtx[1][3] + vec[2] * _mtx[2][3] + _mtx[3][3])));
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0.
GfVec3d TransformDir(const GfVec3d &vec) const {
return GfVec3d(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2]);
}
/// Transforms row vector \e vec by the matrix, returning the result. This
/// treats the vector as a direction vector, so the translation
/// information in the matrix is ignored. That is, it treats the vector as
/// a 4-component vector whose fourth component is 0. This is an
/// overloaded method; it differs from the other version in that it
/// returns a different value type.
GfVec3f TransformDir(const GfVec3f &vec) const {
return GfVec3f(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2]);
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3d TransformAffine(const GfVec3d &vec) const {
return GfVec3d(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0] + _mtx[3][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1] + _mtx[3][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2] + _mtx[3][2]);
}
/// Transforms the row vector \e vec by the matrix, returning the result.
/// This treats the vector as a 4-component vector whose fourth component
/// is 1 and ignores the fourth column of the matrix (i.e. assumes it is
/// (0, 0, 0, 1)).
GfVec3f TransformAffine(const GfVec3f &vec) const {
return GfVec3f(
vec[0] * _mtx[0][0] + vec[1] * _mtx[1][0] + vec[2] * _mtx[2][0] + _mtx[3][0],
vec[0] * _mtx[0][1] + vec[1] * _mtx[1][1] + vec[2] * _mtx[2][1] + _mtx[3][1],
vec[0] * _mtx[0][2] + vec[1] * _mtx[1][2] + vec[2] * _mtx[2][2] + _mtx[3][2]);
}
/// @}
private:
/// Returns the determinant of the 3x3 submatrix specified by the three
/// given row and column indices (0-3 for each).
double _GetDeterminant3(size_t row1, size_t row2, size_t row3,
size_t col1, size_t col2, size_t col3) const;
/// Diagonalizes the upper 3x3 matrix of a matrix known to be symmetric.
void _Jacobi3(GfVec3d *eigenvalues, GfVec3d eigenvectors[3]) const;
private:
/// Matrix storage, in row-major order.
GfMatrixData<double, 4, 4> _mtx;
// Friend declarations
friend class GfMatrix4f;
};
/// Output a GfMatrix4d
/// \ingroup group_gf_DebuggingOutput
std::ostream& operator<<(std::ostream &, GfMatrix4d const &);
#endif // GF_MATRIX4D_H