- 1 Setup
- 2 Utility functions
- 3 Municipalities
data
- 3.1 Import a single municipalities file from CBS (2016 and later)
- 3.2 Import a single variable from a CBS municipalities file (2016 and later) with a single variable
- 3.3 Import a single variable from a CBS municipalities file (2015 and before) with a single variable
- 3.4 Municipality id
- 3.5 Yishuvim
- 3.6 2013 CBS SES data
- 3.7 2004 CBS periphery data
- 4 Elections data
- 5 Organizations data
- 6 Budget data
- 7 CBS cluster data
- 8 Create a complete data frame
- 9 Inequality measures
- 10 Growth rate of budget by group
- 11 Sela Analysis
library(conflicted)
library(tidyverse)
library(readxl)
library(httr)
library(rvest)
library(reldist)
library(scales)
library(timeDate)
library(gtsummary)
library(tidymodels)
library(rtlr)
library(extrafont)
library(ggrepel)
# library(rvest)
# locale("he")
conflicts_prefer(dplyr::filter())
theme_set(theme_minimal())
theme_update(
text = element_text(family = "David")
)
decile_labs <- c(
"חלקם של 50% התחתונים בתקציב התרבות",
"חלקם של העשירונים השישי עד התשיעי בתקציב התרבות",
"חלקו של העשירון העליון בתקציב התרבות"
)
sector_labs <- c(
"רשויות עם רוב יהודי",
"רשויות עם רוב ערבי"
)
hypo_labs <- c(
"ערך מדד היפותטי",
"ערך מדד בפועל"
)
muni_type_colors <- c(
"עירייה" = "#F8766D",
"מועצה אזורית" = "#00BA38",
"מועצה מקומית" = "#619CFF"
)
This function finds the file extension of a file. It receives a string
as an argument, and returns the last letters and numbers of the string,
prefixed by a dot (.
). This helps to identify the file type from a
file path, mainly used to write temporary files to disk when reading
Excel files.
get_file_ext <- function(string) {
str_c(".", str_extract(string, "[0-9a-z]+$"))
}
This function reads an Excel file from a url online. It receives a url
and other arguments used by read_excel()
, and returns the tibble after
being read.
read_excel_url <- function(url, ...) {
GET(url, write_disk(tf <- tempfile(fileext = get_file_ext(url))))
read_excel(tf, ...)
}
This function helps to fix column names of Excel tables, mainly of the form of those found in Israeli CBS municipality data. It does so by fixing a single row of to-be column names. It receives a data frame, an integer number representing a single row considered as holding (some of the) variable names, and a logical length-one vector specifying whether to fill missing values with preceding values or not. This last argument is mostly used in the case of merged cells in Excel files. The function first transposes the row, and then either fills it with values or turns NAs to empty strings.
fix_names <- function(data, row_num, fill_missing) {
data <- data |>
slice(row_num) |>
pivot_longer(everything()) |>
select(value)
if (fill_missing) {
data <- data |>
fill(value)
}
else {
data <- data |>
replace_na(list(value = "")) |>
mutate(
value = if_else(
str_length(value) > 0,
str_c(" ", value),
value
)
)
}
data |>
pull(value)
}
This function fixes column names of Excel tables, mainly of the form of
those found in Israeli CBS municipality data. It receives a data frame,
a vector with the row numbers considered as holding the variable names,
and a logical vector specifying whether to fill missing values with
preceding values or not. This last argument should be either of length
1, or of length of row_num
. It is mostly used in the case of merged
cells in Excel files. The function saves the new column names by
iterating over every row, fixing the variable names, binding all names
to a single tibble, uniting the different columns to a single column and
pulling these values as a vector. The old rows containing these column
names are filtered out, and the new merged and fixed names are set to
the data frame, which is then returned.
merge_names <- function(data, names_num = 2, fill_missing = TRUE) {
rows <- seq(names_num)
col_names_merged <- map2(
rows,
fill_missing,
\(i, fill_missing) fix_names(data, row_num = i, fill_missing)
) |>
bind_cols() |>
unite(col = "var_names", sep = "") |>
pull(var_names)
data <- data |>
slice(-rows)
names(data) <- col_names_merged
data
}
fix_yishuv_id <- function(yishuv_id) {
str_pad(yishuv_id, width = 4, side = "left", pad = "0")
}
clean_yishuv_name <- function(yishuv_name) {
yishuv_name |>
str_remove_all("[[:punct:][:symbol:][:digit:]&&[^'\\-()\"]]") |>
str_squish()
}
replace_match <- function(vec, vec_id, match_id, replace_with) {
case_match(
{{ vec_id }},
match_id ~ {{ replace_with }},
.default = vec
)
}
plot_line_group <- function(data, group, x = year, y = budget_per_capita, legend_labs = waiver()) {
min_x <- min(data |> pull({{ x }}))
max_x <- max(data |> pull({{ x }}))
data |>
mutate({{ group }} := fct_reorder2({{ group }}, {{ x }}, {{ y }})) |>
ggplot(aes({{ x }}, {{ y }}, color = {{ group }}, shape = {{ group }})) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text(
# data = data |>
# filter(year %in% c(max_x, min_x)),
aes(label = round({{ y }}, digits = 1)),
vjust = -1,
show.legend = FALSE
) +
scale_x_continuous(breaks = min_x:max_x) +
scale_y_continuous(expand = expansion(mult = c(0, 0.1)), limits = c(0, NA)) +
scale_color_discrete(labels = legend_labs) +
scale_shape_discrete(labels = legend_labs) +
theme(
legend.title= element_blank(),
legend.background = element_rect(fill = "white", color = "black")
)
}
plot_line_group_hypo <- function(data, group, x = year, y = budget_per_capita, is_hypo = type, legend_labs = waiver()) {
min_x <- min(data |> pull({{ x }}))
max_x <- max(data |> pull({{ x }}))
data |>
mutate({{ group }} := fct_reorder2({{ group }}, {{ x }}, {{ y }})) |>
ggplot(aes({{ x }}, {{ y }}, color = {{ group }}, shape = {{ group }}, linetype = {{ is_hypo }})) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text_repel(
aes(label = if_else( {{ x }} > 2015 | {{ is_hypo }} == "real", as.character(round({{ y }}, digits = 1)), "")),
vjust = -1,
show.legend = FALSE,
direction = "y",
segment.alpha = 0
) +
scale_x_continuous(breaks = min_x:max_x) +
scale_y_continuous(expand = expansion(mult = c(0, 0.1)), limits = c(0, NA)) +
scale_color_discrete(labels = legend_labs) +
scale_shape_discrete(labels = legend_labs) +
scale_linetype_manual(values = c("real" = 1, "hypo" = 3), labels = hypo_labs) +
theme(
legend.title= element_blank(),
legend.background = element_rect(fill = "white", color = "black")
)
}
This is a function that gets a path and returns a tibble. First, it creates a temporary file: it either downloads the file with the path parameter as url, or uses the local path. later, it reads the two lines of names of variables and handles each one of them separately. The upper row gets filled with previous variable names for NAs because of merged cells in the original table. The lower row gets blank string for NAs. When concatenating, if there is a second argument for the variable, the variable name gets padded with blank space between its two arguments. Finally, these column names are added to the tibble. The tibble is read again to ensure good guessing of column types.
read_muni_new <- function(path, is_online = FALSE) {
if (is_online)
GET(path, write_disk(path <- tempfile(fileext = get_file_ext(path))))
col_names_merged <- read_excel(path, sheet = 2, skip = 3, n_max = 2, col_names = FALSE) |>
merge_names(names_num = 2, fill_missing = c(TRUE, FALSE)) |>
names()
read_excel(path, sheet = 2, skip = 5, col_names = col_names_merged)
}
df_2018 <- read_muni_new("data/municipalities/2018.xlsx")
read_muni_new_var <- function(path, var_name, col_num, is_online = FALSE) {
if(is_online)
GET(path, write_disk(path <- tempfile(fileext = get_file_ext(path))))
read_excel(path, sheet = 2, skip = 5, col_names = FALSE) |>
select(
muni_id = 2,
"{var_name}" := all_of(col_num)
)
}
This function is important because some SELA data is using population data older than 2018. This function takes the url of the file, the wanted column numbers for the cities and for the regional councils. It returns a tibble with a municipality id and the wanted variable values.
read_muni_old_var <- function(path, var_name, col_num_1, col_num_2, skip_rows = 1, is_online = FALSE) {
if(is_online)
GET(path, write_disk(path <- tempfile(fileext = get_file_ext(path))))
df1 <- read_excel(path, sheet = 2, skip = skip_rows)
df2 <- read_excel(path, sheet = 4, skip = skip_rows)
df1 <- df1 |>
select(
muni_id = 2,
"{var_name}" := all_of(col_num_1)
) |>
filter(str_length(muni_id) == 4)
df2 <- df2 |>
select(
muni_id = 2,
"{var_name}" := all_of(col_num_2)
) |>
filter(str_length(muni_id) == 2)
bind_rows(df1, df2)
}
Every municipality has different ids for different authorities. This function reads the requested ids and includes their names if requested.
read_muni_id <- function(id_types = c("cbs", "edu", "tax"), include_names = FALSE) {
data <- read_csv("https://raw.githubusercontent.com/matanhakim/general_files/main/muni_ids.csv", col_types = cols(.default = "c"))
if (include_names)
{
data |>
select(contains(id_types))
}
else
{
data |>
select(contains(id_types) & ends_with("id"))
}
}
This function reads a specific variable from the yishuvim data, alongside its yishuv id.
read_yishuv <- function(var_name, col_num) {
read_excel("data/yishuvim/bycode2021.xlsx", col_types = "text") |>
select(
yishuv_id = 2,
"{var_name}" := all_of(col_num)
) |>
mutate(
yishuv_id = fix_yishuv_id(yishuv_id)
)
}
This is a specific function that matches yishuv and municipality id.
match_yishuv_muni <- function() {
read_yishuv("muni_id", 9) |>
mutate(
muni_id = case_when(
(muni_id == "0" | muni_id == "99") ~ yishuv_id,
TRUE ~ str_pad(muni_id, width = 2, side = "left", pad = "0")
)
)
}
This function reads all possible names for yishuvim and their CBS yishuv id.
read_yishuv_names <- function() {
read_csv(
"https://raw.githubusercontent.com/matanhakim/general_files/main/yishuv_names.csv",
col_types = cols(.default = "c")
)
}
This function reads the 2013 CBS SES data for municipalities that is being used by 2018 SELA regulations to determine eligibility of municipalities. It reads the file, selects the relevant variables, removes excess rows, and transforms the id to the usual format.
read_ses_2013 <- function(url) {
read_excel("data/municipalities/t02.xls", skip = 6) |>
slice(2:256) |>
select(
muni_status = 1,
muni_id = 2,
ses_2013_i = 5,
ses_2013_r = 6,
ses_2013_c = 7
) |>
mutate(
muni_id = as.character(muni_id),
muni_id = case_when(
(muni_status == "0" | muni_status == "99") ~ str_pad(muni_id, width = 4, side = "left", pad = "0"),
TRUE ~ str_pad(muni_status, width = 2, side = "left", pad = "0")
),
across(c(ses_2013_r, ses_2013_c), parse_double)
) |>
select(!muni_status)
}
Important to note that this is and old indicator, therefore since then some municipal jurisdiction changes have happened:
read_peri_2004 <- function() {
df <- read_excel("data/indices/24_08_160t2.xls", skip = 7)
df |>
select(
muni_id = 1,
peri_2004_i = 9,
peri_2004_r = 10,
peri_2004_c = 11
) |>
mutate(
muni_id = as.character(muni_id),
muni_id = case_when(
str_length(muni_id) == 5 ~ str_sub(muni_id, start = -2),
TRUE ~ fix_yishuv_id(muni_id)
)
)
}
This function reads the raw 2015 elections data file and adds a municipality id for every yishuv.
read_elect_muni <- function() {
read_excel("data/elections/results_20.xls") |>
rename(yishuv_id = 2) |>
mutate(yishuv_id = fix_yishuv_id(yishuv_id)) |>
left_join(match_yishuv_muni(), join_by(yishuv_id))
}
This function computes voting percentages for Likud and coalition parties in every municipality. It filters out NA values (like Beduin tribes). In 2015, there were no voting in Ein Kinya.
read_elect_pct <- function() {
read_elect_muni() |>
rename(
pot_votes = 4,
elec_good_votes = 7,
yahadut_hatorah = 9,
habait_hayehudi = 14,
kulanu = 19,
israel_beytenu = 20,
halikud = 21,
shas = 33
) |>
mutate(
coal = yahadut_hatorah +
habait_hayehudi +
kulanu +
israel_beytenu +
halikud +
shas
) |>
group_by(muni_id) |>
summarize(
elec_likud_votes = sum(halikud),
elec_coal_votes = sum(coal),
elec_likud_pct = 100 * sum(halikud) / sum(elec_good_votes),
elec_coal_pct = 100 * sum(coal) / sum(elec_good_votes),
elec_pot_votes = sum(pot_votes),
elec_good_votes = sum(elec_good_votes)
) |>
filter(!is.na(muni_id))
}
This function reads every registered amuta from guidestar and returns its organiztion (tax) id and the name of its registered yishuv
read_amutot <- function() {
df_amutot_new <- read_excel("data/organizations/דוח חודשי גיידסטאר.xlsx", sheet = 2) |>
select(
tax_id = 2,
yishuv_name = 14
) |>
mutate(
tax_id = as.character(tax_id),
yishuv_name = clean_yishuv_name(yishuv_name)
)
df_amutot_old <- read_excel("data/organizations/דוח גיידסטאר - אוגוסט 2020.xlsx") |>
select(
tax_id = 2,
yishuv_name = 28
) |>
mutate(
tax_id = as.character(tax_id),
yishuv_name = clean_yishuv_name(yishuv_name)
)
bind_rows(
df_amutot_new,
df_amutot_old
) |>
arrange(tax_id, yishuv_name) |>
distinct(tax_id, .keep_all = TRUE)
}
read_companies <- function() {
read_csv("data/organizations/companies.csv") |>
select(
tax_id = 1,
yishuv_name = 13
) |>
filter(!is.na(yishuv_name)) |>
mutate(
tax_id = as.character(tax_id),
yishuv_name = clean_yishuv_name(yishuv_name)
)
}
read_muni_names <- function() {
read_muni_id(include_names = TRUE) |>
select(!c(edu_id, cbs_id)) |>
pivot_longer(!tax_id, names_to = "var", values_to = "yishuv_name") |>
select(!var) |>
distinct(yishuv_name, .keep_all = TRUE)
}
read_organizations_bad_names <- function() {
tibble(
tax_id = c(
"589931187", # אוניברסיטת תל אביב
"500701628", # אוניברסיטת חיפה
"580303808", # תזמורת יד חריף (צרעה)
"580503605", # תזמורת נתיה הקאמרית הקיבוצית
"510101819", # חברת נכון בע"מ (חיפה)
"589120880", # המרכז לאמנות יהודית רוסית (תל אביב)
"511854788", # מתנס רמת נגב
"512103383", # תאטרון ענתות (ראשון לציון)
"510021298", # סול בעמ ( לא ידוע)
"501501183", # ועדה מוניציפאלית חברון
"510318652", # מקיצי נרדמים בעמ ( תל אביב)
"510550767", # לאובק חיפה
"500217229", # מגדל תפן
"580409449", # עמותת יוצאי טורקיה בישראל (יהוד-מונוסון)
"510356777", # המכון לתרגום ספרות עברית (תל אביב)
"580270858", # פורום עולים ידידות (חולון)
"510497464", # התאטרון הפתוח בעמ (תל אביב)
"580374270", # אמנות המשחק לתיאטרון ולקולנוע
"580070845", # מרכז זלמן שזר (ירושלים)
"580510097", # להקת המחול מוריה קונג (תל אביב)
"580520229", # אקס טריטוריה (תל אביב)
"580114965", # כת עת אל-שרק (שפרעם)
"580373777", # אנסמבל תיאטרון הרצליה
"500500962", # יד יצחק בן-צבי (ירושלים)
"580302909" # תאיר - מרכז לתרבות יהודית (תל אביב)
),
yishuv_name = c(
"תל אביב - יפו",
"חיפה",
"צרעה",
"נתניה",
"חיפה",
"תל אביב - יפו",
"רמת נגב",
"ראשון לציון",
NA,
"חברון",
"תל אביב - יפו",
"חיפה",
"מגדל תפן",
"יהוד-מונוסון",
"תל אביב - יפו",
"חולון",
"תל אביב - יפו",
"תל אביב - יפו",
"ירושלים",
"תל אביב - יפו",
"תל אביב - יפו",
"שפרעם",
"הרצליה",
"ירושלים",
"תל אביב - יפו"
)
)
}
read_organizations <- function() {
bind_rows(
read_amutot(),
read_companies(),
read_muni_names(),
read_organizations_bad_names()
) |>
arrange(tax_id, yishuv_name) |>
distinct(tax_id, .keep_all = TRUE) |>
left_join(read_yishuv_names(), join_by(yishuv_name))
}
This function reads SELA budget by the ministry of culture from the years 2016-2019.
read_sela_budget <- function() {
read_excel("data/budget/תמיכות המשרד לגופי תרבות 2016-2019.xlsx", sheet = 39) |>
slice(-1) |>
select(
tax_id = 1,
# tax_name = 2,
init_2016 = 3,
fest_2016 = 4,
sela_2016 = 5,
init_2017 = 7,
fest_2017 = 8,
sela_2017 = 9,
init_2018 = 11,
fest_2018 = 12,
sela_2018 = 13,
init_2019 = 15,
fest_2019 = 16,
sela_2019 = 17
) |>
pivot_longer(!tax_id, names_to = c("budget_type", "year"), names_sep = "_", values_to = "budget") |>
replace_na(list(budget = 0)) |>
mutate(
year = as.numeric(year)
) |>
pivot_wider(names_from = "budget_type", names_prefix = "budget_approved_", values_from = "budget") |>
left_join(read_muni_id(c("tax", "cbs")), join_by(tax_id)) |>
select(
muni_id = cbs_id,
!tax_id
)
}
This function reads the raw data from the Open Budget website of the ministry of culture, and summarizes it by year and organization.
read_culture_budget <- function() {
read_csv("data/budget/מינהל התרבות__ פירוט כל התמיכות מתקציב זה שאושרו ב כל השנים.csv") |>
select(
tax_id = 6,
year = 7,
budget_approved_culture = 8,
budget_paid_culture = 9
) |>
replace_na(
list(budget_approved_culture = 0, budget_paid_culture = 0)
) |>
mutate(tax_id = as.character(tax_id)) |>
summarise(
.by = c(tax_id, year),
budget_approved_culture = sum(budget_approved_culture),
budget_paid_culture = sum(budget_paid_culture)
)
}
This chunk checks which organizations that got budget from the ministry of culture do not appear in the current organizations data.
df_culture <- read_culture_budget() |>
left_join(read_organizations(), join_by(tax_id))
df_bad_names <- df_culture |>
filter(is.na(yishuv_id)) |>
distinct(yishuv_name, .keep_all = TRUE)
This function matches every organization supported by the ministry of culture with its municipality id. this leaves us with a municipality id for every budget support of the ministry of culture for every organization in every year. missing values include yishuvim not part of any municipality, like Mikveh Israel and the airport, and budgets that do not go to organiztions, mostly prizes for individuals.
add_culture_budget_muni_id <- function() {
df_culture <- read_culture_budget() |>
left_join(read_organizations(), join_by(tax_id)) |>
left_join(match_yishuv_muni(), join_by(yishuv_id)) |>
mutate(
muni_id = case_when(
!is.na(muni_id) ~ muni_id,
str_length(yishuv_id) == 2 ~ yishuv_id
)
)
}
This function summarizes the cultural budget data by municipality and year.
culture_budget_by_muni <- function() {
add_culture_budget_muni_id() |>
summarise(
.by = c(year, muni_id),
budget_approved_culture = sum(budget_approved_culture),
budget_paid_culture = sum(budget_paid_culture)
)
}
Since the SELA budget relies also on national priority areas, these data are needed to be imported.
This function reads the table data in the national priority areas government decision webpage, and returns a list of those tables.
get_nat_pri_list <- function(){
# nat_pri_url <- "https://www.gov.il/he/departments/policies/2013_des667"
#
# read_html(nat_pri_url) |>
# html_elements("table") |>
# html_table()
list(
read_csv("data/national_priority/nafot_priority.csv", col_names = FALSE),
read_csv("data/national_priority/yishuvim_border.csv"),
read_csv("data/national_priority/yishuvim_priority.csv")
)
}
This function reads the tables from the previous section and manipulates them: - The nafot (subdistricts) data is added with the corresponding nafa_id column, and converts Hebrew data to logical. - The yishuvim declared as national priority are cleaned, added with a TRUE column and formats the yishuv_id. - The yishuvim declared as close to the border or threatened are cleaned, added with a TRUE column and formats the yishuv_id. - The whole yishuvim list is being called from the CBS website, and then all other three data frames are joined. NA’s are replaced with FALSE, and a final national priority variable for each yishuv is calculated. - Finally, yishuvim with NA as municipality are filtered out, and a final national priority variable for each municipality is calculated as having either more than 75% of yishuvim in the municipality as national priority, or more than 50% of yishuvim in the municipality as close to the border or threatened.
read_nat_pri_munis <- function(){
pri_list <- get_nat_pri_list()
pri_nafot <- pri_list[[1]] |>
add_column(nafa_id = c(29,21,24,62,22,23,71,32,11,61,31,41,44,43,42,51)) |>
mutate(
nafa_id = as.character(nafa_id),
nafa_nat_pri = (X7 == "כן")
) |>
select(nafa_id, nafa_nat_pri)
pri_yishuvim <- pri_list[[2]] |>
select(yishuv_id = 1) |>
slice_tail(n = -1) |>
add_column(yishuv_nat_pri = TRUE) |>
mutate(yishuv_id = fix_yishuv_id(yishuv_id))
pri_border <- pri_list[[3]] |>
select(yishuv_id = 1) |>
slice_tail(n = -1) |>
add_column(border_nat_pri = TRUE) |>
mutate(yishuv_id = fix_yishuv_id(yishuv_id))
pri_df <- match_yishuv_muni() |>
left_join(read_yishuv("nafa_id", 6), join_by(yishuv_id)) |>
left_join(pri_nafot, by = "nafa_id") |>
left_join(pri_yishuvim, by = "yishuv_id") |>
left_join(pri_border, by = "yishuv_id") |>
mutate(
across(ends_with("pri"), \(x) replace_na(x, FALSE)),
is_nat_pri = nafa_nat_pri | yishuv_nat_pri | border_nat_pri
)
pri_df |>
filter(!is.na(muni_id)) |>
group_by(muni_id) |>
summarise(is_nat_pri = (mean(is_nat_pri) > 0.75) | (mean(border_nat_pri) >= 0.5))
}
df_pop_args_old <- tribble(
~path, ~var_name, ~col_num_1, ~col_num_2, ~skip_rows, ~year,
"", "pop", 15, 30, 0, 2013,
"", "pop", 16, 33, 1, 2014,
"", "pop", 14, 31, 1, 2015
) |>
mutate(
path = str_c("data/municipalities/", year, ".xls")
) |>
select(!year)
df_pop_args_new <- tibble(
path = str_c("data/municipalities/", 2016:2019, ".xlsx"),
var_name = "pop",
col_num = 13
)
df_pop <- bind_rows(
pmap(df_pop_args_old, read_muni_old_var),
pmap(df_pop_args_new, read_muni_new_var)
) |>
mutate(
year = rep(2013:2019, each = 255),
pop = if_else(pop < 1000, pop * 1000, pop)
)
df_sector <- read_muni_new_var("data/municipalities/2019.xlsx", "arab_pct", 16) |>
mutate(
arab_pct = as.numeric(str_replace(arab_pct, "-", "0")),
sector = as_factor(if_else(arab_pct > 50, "arab", "jewish"))
) |>
select(!arab_pct)
df_peri_2015 <- read_muni_new("data/municipalities/2016.xlsx") |>
select(
muni_id = 2,
muni_type = 4,
peri_2015_c = 187,
peri_2015_i = 188,
peri_2015_r = 189
)
df <- expand_grid(
year = 2013:2019,
read_muni_id(id_types = "cbs", include_names = TRUE)
) |>
rename(
muni_id = cbs_id,
muni_name = cbs_name
) |>
left_join(culture_budget_by_muni(), join_by(year, muni_id)) |>
left_join(read_sela_budget(), join_by(year, muni_id)) |>
left_join(df_pop, join_by(year, muni_id)) |>
left_join(df_sector, join_by(muni_id)) |>
left_join(read_ses_2013(), join_by(muni_id)) |>
left_join(read_peri_2004(), join_by(muni_id)) |>
left_join(df_peri_2015, join_by(muni_id)) |>
left_join(read_nat_pri_munis(), join_by(muni_id)) |>
left_join(read_elect_pct(), join_by(muni_id))
na_peri_muni <- c(
"0483", # Bueina
"0628", # Jat
"0490", # Dir ElAssad
"0534", # Osfia
"69", # AlQasum
"68" # Neve Midbar
)
df <- df |>
mutate(
across(contains(c("budget", "elec")), \(x) replace_na(x, 0)),
budget_approved_culture_per_capita = budget_approved_culture / pop,
peri_2004_i = replace_match(peri_2004_i, muni_id, na_peri_muni, peri_2015_i),
peri_2004_r = replace_match(peri_2004_r, muni_id, na_peri_muni, peri_2015_r),
peri_2004_c = replace_match(peri_2004_c, muni_id, na_peri_muni, peri_2015_c)
)
top_prop <- function(var, weights = 1, top_prop = 0.1) {
tibble(x = var, w = weights) |>
uncount(w) |>
arrange(desc(x)) |>
slice_head(prop = top_prop) |>
summarise(top10_pct = sum(x) / sum(var * weights)) |>
pull(top10_pct)
}
gini_weighted <- function(var, weights) {
tibble(x = var, w = weights) |>
uncount(w) |>
summarise(gini = reldist::gini(x)) |>
pull(gini)
}
df |>
summarise(
.by = year,
budget_tot = sum(budget_approved_culture),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
) |>
pivot_longer(contains("budget"), names_to = "var", values_to = "value") |>
ggplot(aes(year, value)) +
geom_line() +
geom_point() +
geom_text(
aes(label = if_else(value < 1e6, as.character(round(value, 1)), paste0(round(value / 1e6, 0), "M"))),
vjust = -1
) +
facet_wrap(~ var, scales = "free_y", labeller = labeller(var = c(budget_per_capita = "תקציב מינהל תרבות לתושב", budget_tot = "תקציב מינהל תרבות כולל"))) +
scale_y_continuous(
labels = label_number(scale_cut = cut_short_scale()),
limits = c(0, NA),
expand = expansion(mult = c(0, 0.1))
) +
scale_x_continuous(
breaks = 2013:2019,
labels = 2013:2019,
expand = expansion(mult = c(0.1, 0.1))
) +
theme(
panel.grid.minor.x = element_blank()
) +
labs(
x = "שנה",
y = 'ש"ח'
)
df_gini <- df |>
summarise(
.by = year,
# gini_1 = acid::weighted.gini(budget_approved_culture_per_capita, w = pop)[[1]],
# gini_2 = dineq::gini.wtd(budget_approved_culture_per_capita, weights = pop),
gini = gini_weighted(budget_approved_culture_per_capita, weights = as.integer(pop)),
# top10_pct_1 = 1 - DescTools::Quantile(budget_approved_culture, weights = pop, probs = 0.9) / sum(budget_approved_culture * pop),
# top10_pct_2 = 1 - reldist::wtd.quantile(budget_approved_culture, weight = pop, q = 0.9) / sum(budget_approved_culture * pop),
top10_pct = top_prop(budget_approved_culture_per_capita, weights = as.integer(pop), top_prop = 0.1),
bot50_pct = 1 - top_prop(budget_approved_culture_per_capita, weights = as.integer(pop), top_prop = 0.5),
mid50_90_pct = 1 - top10_pct - bot50_pct
)
df_ineq_sector <- df |>
summarise(
.by = c(year, sector),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_ineq_ses_c <- df |>
mutate(
ses_2013_c = fct_collapse(
factor(ses_2013_c),
`אשכולות 1-3` = c("1", "2", "3"),
`אשכולות 4-6` = c("4", "5", "6"),
`אשכולות 7-10` = c("7", "8", "9", "10")
)
) |>
summarise(
.by = c(year, ses_2013_c),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_ineq_ses <- df |>
summarise(
.by = c(year, ses_2013_c),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_ineq_peri <- df |>
summarise(
.by = c(year, peri_2015_c),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_ineq_peri_c <- df |>
mutate(
peri_2015_c = fct_collapse(
factor(peri_2015_c),
`אשכולות 1-3` = c("1", "2", "3"),
`אשכולות 4-6` = c("4", "5", "6"),
`אשכולות 7-10` = c("7", "8", "9", "10")
)
) |>
summarise(
.by = c(year, peri_2015_c),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_clusters <- df |>
pivot_longer(c(ses_2013_c, peri_2015_c), names_to = "cluster_type", values_to = "cluster_value") |>
mutate(
cluster_value = fct_collapse(
factor(cluster_value),
`אשכולות 1-3` = c("1", "2", "3"),
`אשכולות 4-6` = c("4", "5", "6"),
`אשכולות 7-10` = c("7", "8", "9", "10")
)
) |>
summarise(
.by = c(year, cluster_type, cluster_value),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
df_ineq_type <- df |>
summarise(
.by = c(year, muni_type),
budget_per_capita = sum(budget_approved_culture) / sum(pop)
)
percentile_sum <- function(var, weights = 1) {
tibble(x = var, w = weights) |>
uncount(w) |>
arrange(desc(x)) |>
mutate(
percentile = ceiling((length(x):1) * 100 / length(x))
) |>
summarise(
.by = percentile,
percentile_sum = sum(x)
) |>
pull(percentile_sum)
}
percentile_sum_df <- function(data, year) {
data |>
filter(year == {{ year }}) |>
reframe("budget_{{year}}" := percentile_sum(budget_approved_culture_per_capita, weights = pop)) |>
mutate(percentile = 100:1, .before = 1)
}
df_elephant <- df |>
percentile_sum_df(2013) |>
left_join(df |> percentile_sum_df(2018), join_by(percentile)) |>
mutate(
growth_rate = budget_2018 / budget_2013 - 1,
growth_difference = budget_2018 - budget_2013
)
df_gini |>
pivot_longer(!year, names_to = "statistic", values_to = "value") |>
filter(statistic == "gini") |>
ggplot(aes(year, value)) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text(
aes(label = round(value, 3)),
vjust = -1
) +
scale_y_continuous(
expand = expansion(mult = c(0.1, 0.1))
) +
scale_x_continuous(breaks = 2013:2019) +
labs(
x = "שנה",
y = "ערך מדד ג'יני"
)
df_gini |>
pivot_longer(!year, names_to = "statistic", values_to = "value") |>
filter(statistic != "gini") |>
ggplot(aes(year, value, color = statistic, shape = statistic)) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text(
aes(label = percent(value, 0.1)),
vjust = -1,
show.legend = FALSE
) +
scale_y_continuous(
labels = label_percent(),
expand = expansion(mult = c(0, 0.1)),
limits = c(0, NA)
) +
scale_x_continuous(breaks = 2013:2019) +
scale_color_discrete(labels = decile_labs) +
scale_shape_discrete(labels = decile_labs) +
guides(
color = guide_legend(reverse = TRUE),
shape = guide_legend(reverse = TRUE)
) +
theme(
legend.title= element_blank(),
legend.position = c(0.25, 0.3),
legend.background = element_rect(fill = "white", color = "black")
) +
labs(
x = "שנה",
y = "חלקה של כל קבוצה מתוך תקציב מינהל תרבות"
)
df_ineq_sector |>
plot_line_group(sector, legend_labs = sector_labs) +
theme(
legend.position = c(0.25, 0.4)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_ineq_type |>
plot_line_group(muni_type) +
theme(
legend.position = c(0.25, 0.35)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_ineq_ses_c |>
mutate(ses_2013_c = fct_reorder2(ses_2013_c, year, budget_per_capita)) |>
plot_line_group(ses_2013_c) +
theme(
legend.position = c(0.8, 0.2)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_ineq_peri_c |>
plot_line_group(peri_2015_c) +
theme(
legend.position = c(0.8, 0.2)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_clusters |>
plot_line_group(cluster_value) +
facet_wrap(
~ cluster_type,
labeller = labeller(cluster_type = c(
peri_2015_c = str_rtl("אשכול פריפריאליות (2015)"),
ses_2013_c = str_rtl("אשכול חברתי-כלכלי (2013)"))
)
) +
scale_x_continuous(expand = expansion(mult = c(0.1, 0.1))) +
theme(
legend.position = c(0.9, 0.15)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_elephant |>
ggplot(aes(percentile, growth_rate)) +
geom_point() +
geom_line()
df_elephant |>
ggplot(aes(percentile, growth_difference)) +
geom_point() +
geom_line()
df_ineq_sector |>
summarise(
.by = sector,
growth_rate = (last(budget_per_capita) - first(budget_per_capita)) / first(budget_per_capita)
)
df_ineq_ses |>
summarise(
.by = ses_2013_c,
growth_rate = (last(budget_per_capita) - first(budget_per_capita)) / first(budget_per_capita)
) |>
arrange(growth_rate)
df_ineq_ses |>
summarise(
.by = ses_2013_c,
added_budget_per_capita = (last(budget_per_capita) - first(budget_per_capita))
) |>
ggplot(aes(ses_2013_c, added_budget_per_capita)) +
geom_point()
df_ineq_peri |>
summarise(
.by = peri_2015_c,
growth_rate = (last(budget_per_capita) - first(budget_per_capita)) / first(budget_per_capita)
) |>
arrange(growth_rate)
df_ineq_peri |>
summarise(
.by = peri_2015_c,
added_budget_per_capita = (last(budget_per_capita) - first(budget_per_capita))
) |>
ggplot(aes(peri_2015_c, added_budget_per_capita)) +
geom_point()
df |>
summarise(
.by = muni_name,
added_budget_per_capita = nth(budget_approved_culture_per_capita, -2) - nth(budget_approved_culture_per_capita, 2),
ses_2013_i = mean(ses_2013_i)
) |>
arrange(added_budget_per_capita) |>
ggplot(aes(ses_2013_i, added_budget_per_capita)) +
geom_point() +
geom_smooth(se = FALSE)
df_2018 <- df |>
filter(year == 2018) |>
left_join(df |> filter(year == 2015) |> select(muni_id, pop_2015 = pop), join_by(muni_id))
The population year determined to use to decide eligibility is 2015. using 2018 created some municipalities that changed population category between the years. the 2015 year was the latest available during the start of 2018.
df_2018 <- df_2018 |>
mutate(
is_elig_fest = case_when(
pop_2015 > 100000 ~ FALSE,
ses_2013_c >= 6 + 2 ~ FALSE,
ses_2013_c <= 6 ~ TRUE,
muni_type == "מועצה אזורית" & peri_2004_c <= 2 ~ TRUE,
is_nat_pri ~ TRUE,
TRUE ~ FALSE
),
budget_elig_fest = case_when(
!is_elig_fest ~ 0,
pop_2015 <= 5000 ~ 70000,
pop_2015 <= 20000 ~ 115000,
pop_2015 > 20000 ~ 200000
)
)
The eligibility score of each municipality is calculated: first the score is calculated according the the regulations. the score is normalized between all eligible municipalities and then multiplied by a number close to the total budget allocated. the specific number was decided through trial and error to match the vast majority of municipalities.
df_2018 <- df_2018 |>
mutate(
score_elig_init = case_when(
pop_2015 <= 10000 ~ 1,
pop_2015 <= 50000 ~ 2,
pop_2015 <= 100000 ~ 3,
pop_2015 <= 150000 ~ 4,
pop_2015 <= 200000 ~ 5,
pop_2015 <= 500000 ~ 6,
pop_2015 > 500000 ~ 7
),
score_elig_init = case_when(
pop_2015 > 100000 ~ score_elig_init,
is_nat_pri ~ score_elig_init * 2,
ses_2013_c <= 6 ~ score_elig_init * 2,
peri_2004_c <= 2 ~ score_elig_init * 2,
TRUE ~ score_elig_init
),
budget_elig_init = 23907075 * score_elig_init / sum(score_elig_init * (budget_approved_init > 0)),
budget_elig_tot = budget_elig_fest + budget_elig_init
)
df_2018 |>
ggplot(aes(budget_elig_tot)) +
geom_histogram() +
scale_x_continuous(labels = label_comma()) +
labs(
x = 'גובה הזכאות של רשות מקומית לתמיכה תקציבית של תקנת סל"ע בשנת 2018 (ש"ח)',
y = "מספר רשויות"
)
df_2018 |>
summarise(
mean = mean(budget_elig_tot),
sd = sd(budget_elig_tot),
skewness = skewness(budget_elig_tot),
kurtosis = kurtosis(budget_elig_tot)
)
df_2018 |>
select(
budget_elig_tot,
pop_2015,
ses_2013_c,
peri_2004_c,
sector,
elec_likud_pct
) |>
tbl_summary(
statistic = list(all_continuous() ~ "{mean} ({sd})")
)
sela_mdl2 <- lm(budget_elig_tot ~ sector * elec_likud_pct, data = df_2018)
sela_mdl2 %>%
tidy()
sela_mdl2 %>%
glance()
sela_mdl2 %>%
augment() %>%
ggplot(aes(elec_likud_pct, budget_elig_tot, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
This shows a good relationship so that jewish municipalities are receiveing more budget as the Likud voting percent rises.
sela_mdl3 <- lm(budget_elig_tot ~ sector : elec_likud_pct + pop_2015 + ses_2013_c + peri_2004_c, data = df_2018)
sela_mdl3_control <- lm(budget_elig_tot ~ pop_2015 + ses_2013_c + peri_2004_c, data = df_2018)
sela_mdl3_control2 <- lm(budget_elig_tot ~ pop_2015 + ses_2013_c + peri_2004_c + is_nat_pri, data = df_2018)
anova(sela_mdl3_control, sela_mdl3)
sela_mdl3 %>%
tidy()
sela_mdl3 %>%
glance()
sela_mdl3_control %>%
tidy()
sela_mdl3_control %>%
glance()
sela_mdl3 %>%
augment() %>%
ggplot(aes(elec_likud_pct, budget_elig_tot, color = sector)) +
geom_line(aes(y = .fitted)) +
geom_point()
sela_mdl3 %>%
augment() %>%
ggplot(aes(elec_likud_pct, .fitted - sela_mdl3_control %>% augment() %>% pull(.fitted), color = sector)) +
geom_line() +
geom_point() +
geom_smooth(method = "lm", se = FALSE)
The model is still significant for Likud voting percentage after adding control variables.
Let’s create a better plot for the last plot of the difference between the two models.
sela_mdl3 %>%
augment() %>%
ggplot(aes(
elec_likud_pct, .fitted - sela_mdl3_control %>% augment() %>% pull(.fitted),
color = sector,
shape = sector
)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
scale_y_continuous(labels = label_comma()) +
scale_x_continuous(labels = label_percent(scale = 1)) +
scale_color_discrete(labels = c("ערבי", "יהודי")) +
scale_shape_discrete(labels = c("ערבי", "יהודי")) +
guides(shape = guide_legend(override.aes = list(size = 3))) +
theme(legend.position = "bottom") +
labs(
x = "אחוז הצבעה לליכוד בבחירות 2015",
y = '\u202B"דיבידנד הנאמנות בתרבות" (ש"ח)',
color = "מגזר",
shape = "מגזר"
)
Let’s put the two models in a table.
tbl_merge(
list(
tbl_regression(
sela_mdl3_control,
intercept = TRUE,
conf.int = FALSE
) %>%
modify_header(
statistic = "**t-statistic**",
std.error = "**SE**"
) %>%
bold_p() %>%
add_glance_table(
include = c(r.squared, statistic)
)
,
tbl_regression(
sela_mdl3,
intercept = TRUE,
conf.int = FALSE
) %>%
modify_header(
statistic = "**t-statistic**",
std.error = "**SE**"
) %>%
bold_p() %>%
add_glance_table(
include = c(r.squared, statistic)
)
),
tab_spanner = c("M1", "M2")
) %>%
modify_table_body(~.x %>% arrange(row_type == "glance_statistic")) %>%
as_flex_table()
Let’s check the distribution of voting to Likud across SES clusters.
elec_more_df <- df %>%
mutate(
likud_votes = elec_good_votes * (elec_likud_pct / 100),
ses_2013_c = factor(ses_2013_c)
)
elec_more_df %>%
group_by(ses_2013_c) %>%
summarise(elec_likud_pct = round(sum(likud_votes) / sum(elec_good_votes) * 100, 1)) %>%
ggplot(aes(ses_2013_c, elec_likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(elec_likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = str_rtl("אשכול חברתי-כלכלי (2013)"),
y = str_rtl("אחוז הצבעה לליכוד בבחירות 2015")
)
Since SES cluster 7 had special criteria, Let’s look at the Likud voting patterns within them.
ses_7_df <- elec_more_df %>%
filter(ses_2013_c == "7")
ses_7_df %>%
count(is_nat_pri, muni_type == "מועצה אזורית" & peri_2004_c <= 2)
ses_7_df %>%
group_by(is_nat_pri) %>%
summarise(elec_likud_pct = round(sum(likud_votes) / sum(elec_good_votes) * 100, 1)) %>%
ggplot(aes(is_nat_pri, elec_likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(elec_likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית",
y = "אחוז הצבעה לליכוד"
)
# by a simple mean and not total mean
ses_7_df %>%
group_by(is_nat_pri) %>%
summarise(elec_likud_pct = round(mean(elec_likud_pct), 1)) %>%
ggplot(aes(is_nat_pri, elec_likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(elec_likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית",
y = "אחוז הצבעה לליכוד"
)
# by eligibility criterea for initiatives
elec_more_df %>%
filter(ses_2013_c %in% c("7", "8", "9", "10")) %>%
mutate(special_elig_init = is_nat_pri | peri_2004_c <= 2) %>%
group_by(special_elig_init) %>%
summarise(elec_likud_pct = round(mean(elec_likud_pct), 1)) %>%
ggplot(aes(special_elig_init, elec_likud_pct)) +
geom_col() +
geom_text(
aes(label = paste0(round(elec_likud_pct, digits = 1), "%")),
vjust = -0.5
) +
scale_y_continuous(
labels = label_percent(scale = 1),
expand = expansion(mult = c(0, 0.1))
) +
labs(
x = "אזור עדיפות לאומית או רשות פריפריאלית",
y = "אחוז הצבעה לליכוד"
)
calc_eligibility <- function(data, cluster) {
data |>
mutate( # Festivals eligibility
is_elig_fest = case_when(
pop_2015 > 100000 ~ FALSE,
ses_2013_c >= cluster + 2 ~ FALSE,
ses_2013_c <= cluster ~ TRUE,
muni_type == "מועצה אזורית" & peri_2004_c <= 2 ~ TRUE,
is_nat_pri ~ TRUE,
TRUE ~ FALSE
),
budget_elig_fest = case_when(
!is_elig_fest ~ 0,
pop_2015 <= 5000 ~ 70000,
pop_2015 <= 20000 ~ 115000,
pop_2015 > 20000 ~ 200000
)
) |>
mutate( # Initiatives eligibility
score_elig_init = case_when(
pop_2015 <= 10000 ~ 1,
pop_2015 <= 50000 ~ 2,
pop_2015 <= 100000 ~ 3,
pop_2015 <= 150000 ~ 4,
pop_2015 <= 200000 ~ 5,
pop_2015 <= 500000 ~ 6,
pop_2015 > 500000 ~ 7
),
score_elig_init = case_when(
pop_2015 > 100000 ~ score_elig_init,
is_nat_pri ~ score_elig_init * 2,
ses_2013_c <= cluster ~ score_elig_init * 2,
peri_2004_c <= 2 ~ score_elig_init * 2,
TRUE ~ score_elig_init
),
budget_elig_init = 23959050 * score_elig_init / sum(score_elig_init * (budget_approved_init > 0)),
budget_elig_tot = budget_elig_fest + budget_elig_init
)
}
model_sela <- function(data) {
sela_mdl <- lm(budget_elig_tot ~ sector : elec_likud_pct + pop_2015 + ses_2013_c + peri_2004_c, data = data)
sela_mdl_control <- lm(budget_elig_tot ~ pop_2015 + ses_2013_c + peri_2004_c, data = data)
mdl_anova <- anova(sela_mdl_control, sela_mdl)
df_effect <- sela_mdl |>
tidy() |>
filter(term == "sectorjewish:elec_likud_pct")
tibble(
data = list(data),
m1 = list(sela_mdl_control),
m2 = list(sela_mdl),
anova = list(mdl_anova),
p_anova = mdl_anova[[6]][[2]],
b_effect = df_effect$estimate,
p_effect = df_effect$p.value,
budget_per_likud_vote = data[[1]] |>
summarise(sum(budget_elig_tot * elec_likud_pct / 100) / sum(elec_likud_votes)) |>
pull(),
budget_per_coal_vote = data[[1]] |>
summarise(sum(budget_elig_tot * elec_coal_pct / 100) / sum(elec_coal_votes)) |>
pull(),
budget_per_left_vote = data[[1]] |>
summarise(sum(budget_elig_tot * (100 - elec_coal_pct) / 100) / sum(elec_good_votes - elec_coal_votes)) |>
pull(),
budget_per_vote = data[[1]] |>
summarise(sum(budget_elig_init)) |>
pull()
)
}
df_sela_mdl <- map2(list(df_2018), 1:10, calc_eligibility) |>
map(model_sela) |>
list_rbind() |>
mutate(
cluster = 1:10,
p_effect_ast = case_when(
p_effect > 0.05 ~ "",
p_effect > 0.01 ~ "*",
p_effect > 0.001 ~ "**",
p_effect <= 0.001 ~ "***"
),
budget_ratio = budget_per_likud_vote / budget_per_left_vote
)
df_sela_mdl
df_sela_mdl |>
mutate(to_highlight = if_else(cluster == 6, "yes", "no")) |>
ggplot(aes(cluster, b_effect, label = str_c(p_effect_ast, comma(b_effect)), fill = to_highlight)) +
geom_col() +
geom_text(aes(vjust = -1 * sign(b_effect))) +
scale_x_continuous(breaks = 1:10) +
scale_y_continuous(
labels = label_comma(), expand = expansion(mult = c(0.1, 0.1))
) +
scale_fill_manual(values = c("yes" = "darkred"), guide = "none") +
theme(plot.caption = element_text(hjust = 0)) +
labs(
x = "אשכול סף חברתי-כלכלי",
y = 'דיבידנד נאמנות (ש"ח)',
caption = "* p < 0.1, ** p < 0.01, *** p < 0.001"
)
df <- df |>
mutate(
.by = year,
# The hypothetical SELA budget that would be going to the municipality if the budget was distributed by the the culture budget distribution that year
budget_approved_culture_pct = (budget_approved_culture - budget_approved_sela) / sum(budget_approved_culture - budget_approved_sela),
budget_approved_sela_hypo = sum(budget_approved_sela) * budget_approved_culture_pct
) |>
mutate(
# The hypothetical total culture budget that would be going to the municipality if the SELA budget was distributed by the 2014 total culture budget distribution
budget_approved_culture_hypo = budget_approved_culture - budget_approved_sela + budget_approved_sela_hypo,
budget_approved_culture_hypo_per_capita = budget_approved_culture_hypo / pop
)
df |>
filter(year >= 2016) |>
pivot_longer(c(budget_approved_culture_per_capita, budget_approved_culture_hypo_per_capita), names_to = "statistic", values_to = "value") |>
ggplot(aes(log10(value + 1), color = statistic)) +
geom_density()
df |>
mutate(muni_type = fct_relevel(muni_type, "עירייה", "מועצה אזורית", "מועצה מקומית")) |>
filter(year == 2018) |>
ggplot(aes(log10(budget_approved_culture_per_capita + 0.1), log10(budget_approved_culture_hypo_per_capita + 0.1), size = pop, color = muni_type)) +
geom_point(alpha = 0.5) +
geom_abline() +
scale_x_continuous(breaks = -1:3, labels = 10 ^ (-1:3)) +
scale_y_continuous(breaks = -1:3, labels = 10 ^ (-1:3)) +
scale_color_manual(values = muni_type_colors) +
guides(
color = guide_legend(override.aes = list(size = 3), title = "סוג רשות מקומית"),
size = guide_legend(title = "אוכלוסייה")
) +
theme(
legend.position = c(0.2, 0.8),
legend.background = element_rect(fill = "white", color = "black"),
legend.box = "horizontal"
) +
labs(
x = str_rtl('תקציב תרבות בפועל לתושב (ש"ח, סולם לוגריתמי)'),
y= str_rtl('תקציב תרבות היפותטי לתושב (ש"ח, סולם לוגריתמי)')
)
df_gini_2 <- df |>
summarise(
.by = year,
gini_real = gini_weighted(budget_approved_culture_per_capita, weights = as.integer(pop)),
gini_hypo = gini_weighted(budget_approved_culture_hypo_per_capita, weights = as.integer(pop)),
top10_pct_real = top_prop(budget_approved_culture_per_capita, weights = as.integer(pop), top_prop = 0.1),
top10_pct_hypo = top_prop(budget_approved_culture_hypo_per_capita, weights = as.integer(pop), top_prop = 0.1),
bot50_pct_real = 1 - top_prop(budget_approved_culture_per_capita, weights = as.integer(pop), top_prop = 0.5),
bot50_pct_hypo = 1 - top_prop(budget_approved_culture_hypo_per_capita, weights = as.integer(pop), top_prop = 0.5),
mid50_90_pct_real = 1 - top10_pct_real - bot50_pct_real,
mid50_90_pct_hypo = 1 - top10_pct_hypo - bot50_pct_hypo
)
df_gini_2 |>
pivot_longer(!year, names_to = "statistic", values_to = "value") |>
filter(str_detect(statistic, "gini")) |>
ggplot(aes(year, value, linetype = statistic)) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text(
aes(label = round(value, 3)),
vjust = -1
) +
scale_y_continuous(
expand = expansion(mult = c(0.1, 0.1))
) +
scale_x_continuous(breaks = 2013:2019) +
scale_linetype_manual(values = c("gini_real" = 1, "gini_hypo" = 3), labels = hypo_labs) +
theme(
legend.title= element_blank(),
legend.position = c(0.25, 0.3),
legend.background = element_rect(fill = "white", color = "black")
) +
labs(
x = "שנה",
y = "ערך מדד ג'יני"
)
df_gini_2 |>
pivot_longer(!year, names_to = c("statistic", "type"), values_to = "value", names_sep = -5) |>
mutate(type = str_remove(type, "_")) |>
filter(!str_detect(statistic, "gini")) |>
ggplot(aes(year, value, color = statistic, shape = statistic, linetype = type)) +
geom_line(linewidth = 1) +
geom_point(size = 3) +
geom_text_repel(
aes(label = if_else(year > 2015 | type == "real", percent(value, 0.1), "")),
vjust = -1,
show.legend = FALSE,
direction = "y"
) +
scale_y_continuous(
labels = label_percent(),
expand = expansion(mult = c(0, 0.1)),
limits = c(0, NA)
) +
scale_x_continuous(breaks = 2013:2019) +
scale_color_discrete(labels = decile_labs) +
scale_shape_discrete(labels = decile_labs) +
scale_linetype_manual(values = c("real" = 1, "hypo" = 3), labels = hypo_labs) +
guides(
color = guide_legend(reverse = TRUE),
shape = guide_legend(reverse = TRUE)
) +
theme(
legend.title= element_blank(),
legend.position = c(0.45, 0.32),
legend.background = element_rect(fill = "white", color = "black"),
legend.box = "horizontal"
) +
labs(
x = "שנה",
y = "חלקה של כל קבוצה מתוך תקציב מינהל תרבות"
)
df_ineq_sector_hypo <- df |>
summarise(
.by = c(year, sector),
budget_per_capita_real = sum(budget_approved_culture) / sum(pop),
budget_per_capita_hypo = sum(budget_approved_culture_hypo) / sum(pop)
) |>
pivot_longer(!c(year, sector), names_to = c("statistic", "type"), values_to = "value", names_sep = -5) |>
mutate(type = str_remove(type, "_")) |>
rename(budget_per_capita = value)
df_ineq_type_hypo <- df |>
summarise(
.by = c(year, muni_type),
budget_per_capita_real = sum(budget_approved_culture) / sum(pop),
budget_per_capita_hypo = sum(budget_approved_culture_hypo) / sum(pop)
) |>
pivot_longer(!c(year, muni_type), names_to = c("statistic", "type"), values_to = "value", names_sep = -5) |>
mutate(type = str_remove(type, "_")) |>
rename(budget_per_capita = value)
df_clusters_hypo <- df |>
pivot_longer(c(ses_2013_c, peri_2015_c), names_to = "cluster_type", values_to = "cluster_value") |>
mutate(
cluster_value = fct_collapse(
factor(cluster_value),
`אשכולות 1-3` = c("1", "2", "3"),
`אשכולות 4-6` = c("4", "5", "6"),
`אשכולות 7-10` = c("7", "8", "9", "10")
)
) |>
summarise(
.by = c(year, cluster_type, cluster_value),
budget_per_capita_real = sum(budget_approved_culture) / sum(pop),
budget_per_capita_hypo = sum(budget_approved_culture_hypo) / sum(pop)
) |>
pivot_longer(!c(year, cluster_type, cluster_value), names_to = c("statistic", "type"), values_to = "value", names_sep = -5) |>
mutate(type = str_remove(type, "_")) |>
rename(budget_per_capita = value)
df_ineq_sector_hypo |>
plot_line_group_hypo(sector, legend_labs = sector_labs) +
theme(
legend.position = c(0.20, 0.45)
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_ineq_type_hypo |>
plot_line_group_hypo(muni_type) +
theme(
legend.position = c(0.25, 0.35),
legend.box = "horizontal"
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)
df_clusters_hypo |>
plot_line_group_hypo(cluster_value) +
facet_wrap(
~ cluster_type,
labeller = labeller(cluster_type = c(
peri_2015_c = str_rtl("אשכול פריפריאליות (2015)"),
ses_2013_c = str_rtl("אשכול חברתי-כלכלי (2013)"))
)
) +
scale_x_continuous(expand = expansion(mult = c(0.1, 0.1))) +
theme(
legend.position = c(0.8, 0.1),
legend.box = "horizontal"
) +
labs(
x = "שנה",
y = 'תקציב מינהל תרבות לתושב (ש"ח)'
)