diff --git a/theories/SymGroup/weak_order.v b/theories/SymGroup/weak_order.v index 1e68b04..7642044 100644 --- a/theories/SymGroup/weak_order.v +++ b/theories/SymGroup/weak_order.v @@ -277,16 +277,16 @@ have {}Hm (k l : 'I_n) : by rewrite pIt pNIs eq_refl. have {Hm m0 eqm tjltti} Heq : m = 1%N. have {}incl (k l : 'I_n) : k < l -> s k > s l -> t k > t l. - by move=> kltl; move: incl => /subsetP/(_ (k, l)); rewrite !inE kltl. + by move=> kltl; move: incl => /subsetP/(_ (k, l))/[!inE]/[!kltl]. apply anti_leq; rewrite {}m0 andbT {Hd IHd}. rewrite leqNgt; apply/negP => Habs. pose k := (t^-1 (inord (t j).+1)). have tk : t k = (t j).+1 :> nat. by rewrite /k permKV inordK // ltnS (leq_trans tjltti _) // -ltnS. suffices []: (m <= t k - t j) \/ (m <= t i - t k). - - by rewrite tk subSn // subnn => /(leq_trans Habs); rewrite ltnn. - - rewrite tk; rewrite -eqm. - case: (val (t i)) tjltti => //= u; rewrite ltnS => Hu. + - by rewrite tk subSn // subnn => /(leq_trans Habs)/[!ltnn]. + - rewrite tk -eqm. + case: (val (t i)) tjltti => //= u /[!ltnS] Hu. by rewrite subSS subSn // ltnn. case: (ltngtP k i) => [klti | iltk | /val_inj Hk]; last 1 first. - by move: Habs; rewrite -eqm -Hk tk subSn // ?subnn ltnn. @@ -330,7 +330,7 @@ have {Himi Himj} invsett : invset t = (i, j) |: invset (t * 's_(t j)). have {invsett} {}/IHd : invset s \subset invset (t * 's_(t j)). move: incl; rewrite {}invsett => /subsetP Hsubs. apply/subsetP => /= [[k l] H]. - move/(_ _ H): Hsubs; rewrite !inE /= => /orP[] // /eqP Heq. + move/(_ _ H): Hsubs => /[!inE] /orP[] // /eqP Heq. exfalso; move: H; rewrite {}Heq /invset !inE /= iltj /=. by rewrite ltnNge (ltnW siltsj). move/le_trans; apply. @@ -398,7 +398,7 @@ constructor; rewrite /=. + move/(_ _ Hp Hk p0ltj): IHp => {p Hk Hp} /orP[|->]; last by right. by move/(connect_trans (connect1 (e := srel AUB) ip0AB)); left. + wlog ip0 : A B HAUB isA isB ip0AB / (i, p0) \in A. - subst AUB; move=> Hlog; move: ip0AB; rewrite inE => /orP[] Hip0. + subst AUB; move=> Hlog; move: ip0AB => /[!inE] /orP[] Hip0. * by have:= Hip0 => {}/(Hlog A B); apply; rewrite //= inE Hip0. * by have:= Hip0 => {}/(Hlog B A); apply; rewrite // setUC // inE Hip0. suffices: ((i, j) \in AUB) || ((j, p0) \in AUB). @@ -443,7 +443,7 @@ Qed. Lemma suppermPr s t : s <=R (supperm s t). Proof. rewrite !leperm_invset; rewrite invset_supperm /tclosure. -apply/subsetP => /= [[i j] Hinv]; rewrite !inE /=. +apply/subsetP => /= [[i j] Hinv] /[!inE] /=. rewrite neq_ltn (DeltaP ((subsetP (invset_Delta s)) _ Hinv)) /=. by apply/connectP; exists [:: j]; rewrite //= inE Hinv /=. Qed.