diff --git a/theories/lebesgue_stieltjes_measure.v b/theories/lebesgue_stieltjes_measure.v index 665d527f5d..a6315b5654 100644 --- a/theories/lebesgue_stieltjes_measure.v +++ b/theories/lebesgue_stieltjes_measure.v @@ -5,7 +5,7 @@ From mathcomp Require Import finmap fingroup perm rat. Require Import boolp reals ereal classical_sets signed topology numfun. Require Import mathcomp_extra functions normedtype. From HB Require Import structures. -Require Import sequences esum measure fsbigop cardinality set_interval. +Require Import sequences esum measure fsbigop cardinality real_interval. Require Import realfun. (******************************************************************************) @@ -49,7 +49,7 @@ Lemma nondecreasing_right_continuousP (R : numFieldType) (a : R) (e : R) e > 0 -> exists d : {posnum R}, f (a + d%:num) <= f a + e. Proof. move=> e0; move: (cumulative_is_right_continuous f). -move=> /(_ a)/(@cvg_dist _ [normedModType R of R^o]). +move=> /(_ a)/(@cvgr_dist_lt _ [normedModType R of R^o]). move=> /(_ _ e0)[] _ /posnumP[d] => h. exists (PosNum [gt0 of (d%:num / 2)]) => //=. move: h => /(_ (a + d%:num / 2)) /=. @@ -132,7 +132,7 @@ Lemma hlength_finite_fin_num i : neitv i -> hlength [set` i] < +oo -> ((i.1 : \bar R) \is a fin_num) /\ ((i.2 : \bar R) \is a fin_num). Proof. move: i => [[ba a|[]] [bb b|[]]] /neitvP //=; do ?by rewrite ?set_itvE ?eqxx. -by move=> _; rewrite hlength_itv /= ltey. +by move=> _; rewrite hlength_itv /= ltry. by move=> _; rewrite hlength_itv /= ltNye. by move=> _; rewrite hlength_itv. Qed. @@ -150,7 +150,7 @@ rewrite hlength_itv; case: ifPn => //; rewrite -leNgt le_eqVlt => /predU1P[->|]. by move/lt_ereal_bnd/ltW; rewrite leNgt; move: i0 => /neitvP => ->. Qed. -Lemma hlength_itv_bnd (a b : R) (x y : bool): (a <= b)%R -> +Lemma hlength_itv_bnd (a b : R) (x y : bool) : (a <= b)%R -> hlength [set` Interval (BSide x a) (BSide y b)] = (f b - f a)%:E. Proof. move=> ab; rewrite hlength_itv/= lte_fin lt_neqAle ab andbT. @@ -357,7 +357,7 @@ Hint Extern 0 (measurable _) => solve [apply: is_ocitv] : core. Lemma hlength_sigma_finite (f : R -> R) : sigma_finite [set: ocitv_type] (hlength f). Proof. -exists (fun k : nat => `] (- k%:R)%R, k%:R]%classic). +exists (fun k => `](- k%:R), k%:R]%classic). apply/esym; rewrite -subTset => /= x _ /=. exists `|(floor `|x|%R + 1)%R|%N; rewrite //= in_itv/=. rewrite !natr_absz intr_norm intrD -RfloorE. @@ -438,10 +438,10 @@ have [D De] : exists D : nat -> {posnum R}, forall i, by rewrite divr_gt0 // exprn_gt0. have acbd : `[ a.1 + c%:num / 2, a.2] `<=` \bigcup_i `](b i).1, (b i).2 + (D i)%:num[%classic. - apply (@subset_trans _ `]a.1, a.2]). + apply: (@subset_trans _ `]a.1, a.2]). move=> r; rewrite /= !in_itv/= => /andP [+ ->]. by rewrite andbT; apply: lt_le_trans; rewrite ltr_addl. - apply (subset_trans lebig) => r [n _ Anr]; exists n => //. + apply: (subset_trans lebig) => r [n _ Anr]; exists n => //. move: Anr; rewrite AE /= !in_itv/= => /andP [->]/= /le_lt_trans. by apply; rewrite ltr_addl. have := @segment_compact _ (a.1 + c%:num / 2) a.2; rewrite compact_cover. @@ -478,20 +478,38 @@ Let gitvs := [the measurableType _ of salgebraType ocitv]. Definition lebesgue_stieltjes_measure (f : cumulative R) := Hahn_ext [the additive_measure _ _ of hlength f : set ocitv_type -> _ ]. +Let lebesgue_stieltjes_measure0 (f : cumulative R) : + lebesgue_stieltjes_measure f set0 = 0%E. +Proof. by []. Qed. + +Let lebesgue_stieltjes_measure_ge0 (f : cumulative R) : + forall x, (0 <= lebesgue_stieltjes_measure f x)%E. +Proof. exact: measure.Hahn_ext_ge0. Qed. + +Let lebesgue_stietjes_measure_semi_sigma_additive (f : cumulative R) : + semi_sigma_additive (lebesgue_stieltjes_measure f). +Proof. exact/measure.Hahn_ext_sigma_additive/hlength_sigma_sub_additive. Qed. + +HB.instance Definition _ (f : cumulative R) := isMeasure.Build _ _ _ + (lebesgue_stieltjes_measure f) + (lebesgue_stieltjes_measure0 f) + (lebesgue_stieltjes_measure_ge0 f) + (@lebesgue_stietjes_measure_semi_sigma_additive f). + End itv_semiRingOfSets. Arguments lebesgue_stieltjes_measure {R}. Section lebesgue_stieltjes_measure_itv. Variables (d : measure_display) (R : realType) (f : cumulative R). -Let m := lebesgue_stieltjes_measure d f. +Let m := [the measure _ _ of lebesgue_stieltjes_measure d f]. Let g : \bar R -> \bar R := EFinf f. Let lebesgue_stieltjes_measure_itvoc (a b : R) : (m `]a, b] = hlength f `]a, b])%classic. Proof. -rewrite /m /lebesgue_stieltjes_measure /= /Hahn_ext measurable_mu_extE//. +rewrite /m/= /lebesgue_stieltjes_measure /= /Hahn_ext measurable_mu_extE//. exact: hlength_sigma_sub_additive. by exists (a, b). Qed. @@ -499,5 +517,5 @@ Qed. End lebesgue_stieltjes_measure_itv. Example lebesgue_measure d (R : realType) - : set [the measurableType (d.-measurable).-sigma of salgebraType (d.-measurable)] -> \bar R := - lebesgue_stieltjes_measure _ [the cumulative _ of @idfun R]. + : {measure set [the measurableType (d.-measurable).-sigma of salgebraType (d.-measurable)] -> \bar R} := + [the measure _ _ of lebesgue_stieltjes_measure _ [the cumulative _ of @idfun R]].