-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_me.py
180 lines (145 loc) · 5.65 KB
/
main_me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import time
import pickle
from functools import partial
import logging
logger = logging.getLogger(__name__)
import jax
import jax.numpy as jnp
from lenia.lenia import ConfigLenia, Lenia
from qdax.core.containers.mapelites_repertoire import compute_cvt_centroids
from qdax.core.map_elites import MAPElites
from qdax.core.emitters.mutation_operators import isoline_variation
from qdax.core.emitters.standard_emitters import MixingEmitter
from qdax.utils.metrics import CSVLogger, default_qd_metrics
from common import get_metric, repertoire_variance
import hydra
from omegaconf import DictConfig
@hydra.main(version_base=None, config_path="configs/", config_name="me")
def main(config: DictConfig) -> None:
logging.info("Starting MAP-Elites...")
# Init a random key
key = jax.random.PRNGKey(config.seed)
# Lenia
logging.info("Initializing Lenia...")
config_lenia = ConfigLenia(
# Init pattern
pattern_id=config.pattern_id,
# Simulation
world_size=config.world_size,
world_scale=config.world_scale,
n_step=config.n_step,
# Genotype
n_params_size=config.n_params_size,
n_cells_size=config.n_cells_size,
)
lenia = Lenia(config_lenia)
# Load pattern
init_carry, init_genotype, other_asset = lenia.load_pattern(lenia.pattern)
# Define the scoring function
def fitness_fn(observation):
fitness = get_metric(observation, config.qd.fitness, config.qd.n_keep)
assert fitness.size == 1
fitness = jnp.squeeze(fitness)
failed = jnp.logical_or(observation.stats.is_empty.any(), observation.stats.is_full.any())
failed = jnp.logical_or(failed, observation.stats.is_spread.any())
fitness = jnp.where(failed, -jnp.inf, fitness)
return fitness
def descriptor_fn(observation):
descriptor = jnp.concatenate([get_metric(observation, descriptor, config.qd.n_keep) for descriptor in config.qd.descriptor])
return descriptor
def evaluate(genotype):
carry = lenia.express_genotype(init_carry, genotype)
lenia_step = partial(lenia.step, phenotype_size=config.phenotype_size, center_phenotype=config.center_phenotype, record_phenotype=config.record_phenotype)
carry, accum = jax.lax.scan(lenia_step, init=carry, xs=jnp.arange(lenia._config.n_step))
fitness = fitness_fn(accum)
descriptor = descriptor_fn(accum)
accum = jax.tree.map(lambda x: x[-1:], accum) # to compute variance
return fitness, descriptor, accum
def scoring_fn(genotypes, key):
fitnesses, descriptors, observations = jax.vmap(evaluate)(genotypes)
fitnesses_nan = jnp.isnan(fitnesses)
descriptors_nan = jnp.any(jnp.isnan(descriptors), axis=-1)
fitnesses = jnp.where(fitnesses_nan | descriptors_nan, -jnp.inf, fitnesses)
return fitnesses, descriptors, {"observations": observations}, key
# Compute the centroids
descriptor_min = jnp.array(config.qd.descriptor_min)
descriptor_max = jnp.array(config.qd.descriptor_max)
centroids, key = compute_cvt_centroids(
num_descriptors=descriptor_min.size,
num_init_cvt_samples=config.qd.n_init_cvt_samples,
num_centroids=config.qd.repertoire_size,
minval=descriptor_min,
maxval=descriptor_max,
random_key=key,
)
# Define a metrics function
metrics_fn = partial(default_qd_metrics, qd_offset=0.)
# Define emitter
variation_fn = partial(isoline_variation, iso_sigma=config.qd.iso_sigma, line_sigma=config.qd.line_sigma)
mixing_emitter = MixingEmitter(
mutation_fn=None,
variation_fn=variation_fn,
variation_percentage=1.0,
batch_size=config.qd.batch_size
)
# Instantiate MAP-Elites
me = MAPElites(
scoring_function=scoring_fn,
emitter=mixing_emitter,
metrics_function=metrics_fn,
)
# Compute initial repertoire and emitter state
logging.info("Initializing MAP-Elites...")
key, subkey = jax.random.split(key)
init_genotypes = init_genotype[None, ...].repeat(config.qd.batch_size, axis=0)
init_genotypes += jax.random.normal(subkey, shape=(config.qd.batch_size, lenia.n_gene)) * config.qd.iso_sigma
repertoire, emitter_state, key = me.init(
init_genotypes,
centroids,
key,
)
metrics = dict.fromkeys(["generation", "qd_score", "coverage", "max_fitness", "n_elites", "variance", "time"], jnp.array([]))
csv_logger = CSVLogger("./log.csv", header=list(metrics.keys()))
# Main loop
logging.info("Starting main loop...")
def me_scan(carry, unused):
repertoire, key = carry
# ME update
(repertoire, _, metrics, key,) = me.update(
repertoire,
None,
key,
)
return (repertoire, key), metrics
for generation in range(0, config.qd.n_generations, config.qd.log_interval):
start_time = time.time()
(repertoire, key,), current_metrics = jax.lax.scan(
me_scan,
(repertoire, key),
(),
length=config.qd.log_interval,
)
timelapse = time.time() - start_time
# Metrics
current_metrics["generation"] = jnp.arange(1+generation, 1+generation+config.qd.log_interval, dtype=jnp.int32)
current_metrics["n_elites"] = jnp.sum(current_metrics["is_offspring_added"], axis=-1)
del current_metrics["is_offspring_added"]
variance = repertoire_variance(repertoire)
current_metrics["variance"] = jnp.repeat(variance, config.qd.log_interval)
current_metrics["time"] = jnp.repeat(timelapse, config.qd.log_interval)
metrics = jax.tree_util.tree_map(lambda metric, current_metric: jnp.concatenate([metric, current_metric], axis=0), metrics, current_metrics)
# Log
log_metrics = jax.tree_util.tree_map(lambda metric: metric[-1], metrics)
csv_logger.log(log_metrics)
logging.info(log_metrics)
# Metrics
logging.info("Saving metrics...")
with open("./metrics.pickle", "wb") as metrics_file:
pickle.dump(metrics, metrics_file)
# Repertoire
logging.info("Saving repertoire...")
os.mkdir("./repertoire/")
repertoire.replace(observations=jnp.nan).save(path="./repertoire/")
if __name__ == "__main__":
main()