-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathray-tracer.cpp
573 lines (467 loc) · 15.6 KB
/
ray-tracer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
// a ray tracer in C++
// libraries, namespace
#include <thread>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <cmath>
#include <random>
#include "library/loadXML.cpp"
#include "library/scene.cpp"
using namespace std;
// scene to load (project #) + all ray tracing options & settings
string xml = "scenes/prj13.xml";
bool printXML = false;
bool zBuffer = false;
bool sampleCount = false;
int bounceCount = 5;
int sampleMin = 64;
int sampleMax = 256;
float sampleThreshold = 0.001;
int shadowMin = 32;
int shadowMax = 128;
bool gammaCorr = true;
bool globalIllum = false;
bool irradCache = false;
int samplesGI = 128;
bool invSqFO = true;
bool photonMap = true;
int samplesPM = 10000000;
int bounceCountPM = 5;
float photonRad = 5.0;
int maxPhotons = 100;
// variables for ray tracing
int w;
int h;
int size;
Color24* img;
float* zImg;
float* sampleImg;
IrradianceMap im;
BalancedPhotonMap *pm;
// variables for anti-aliasing brightness calculations (XYZ, Lab)
float perR = 0.2126;
float perG = 0.7152;
float perB = 0.0722;
float Ycutoff = pow(6.0 / 29.0, 3.0);
float Yprecalc = (1.0 / 3.0) * pow(29.0 / 6.0, 2.0);
// setup threading
static const int numThreads = 8;
void rayTracing(int i);
void irradianceCache(int i, int m, LightList lightCache);
// for camera ray generation
void cameraRayVars();
float imageDistance = 1.0;
Point *imageTopLeftV;
Point *dXV;
Point *dYV;
Point *dVx;
Point *dVy;
Point firstPixel;
Transformation* c;
Point cameraRay(float pX, float pY, Point offset);
// ray tracer
int main(){
// load scene: root node, camera, image (and set shadow casting variables)
loadScene(xml, printXML, shadowMin, shadowMax, globalIllum, irradCache, samplesGI, invSqFO, photonMap);
// set the scene as the root node
setScene(rootNode);
// set variables for ray tracing
w = render.getWidth();
h = render.getHeight();
size = render.getSize();
img = render.getRender();
zImg = render.getZBuffer();
sampleImg = render.getSample();
if(globalIllum && irradCache)
im.Initialize(w, h);
// set variables for generating camera rays
cameraRayVars();
// compute an irradiance cache for global illumination
if(globalIllum && irradCache){
// caching light list
LightList lightCache;
lightCache.deleteAll();
string name = "indirect";
IrradianceCacheLight *l = new IrradianceCacheLight();
Light *light = NULL;
l->setLightList(&lights);
l->setEnvironment(environment);
l->setSamples(samplesGI);
light = l;
light->setName(name);
lightCache.push_back(light);
// subdivide our image to compute indirect illumination
bool subdivide = true;
while(subdivide){
// check if we are on final subdivide
if(im.GetSubdivLevel() == 0)
subdivide = false;
// calculate indirect illumination
int cnt = 0;
for(int i = 0; i < im.GetDataCount(); i++){
// grab position on image plane
float px;
float py;
im.GetPosition(i, px, py);
// get the pixel number
int pixel = px + py * w;
// compute the ray tracing cache (if needs to be set)
if(!im.IsValid(i))
irradianceCache(pixel, i, lightCache);
}
// subdivide (if necessary)
if(subdivide)
im.Subdivide();
}
}
// compute a photon map for global illumination
if(photonMap){
// initialize photon map
PhotonMap *map = createPhotonMap(samplesPM);
// calculate total light power for random selection
float powTot = 0.0;
int numLights = lights.size();
float *lightPow = new float[numLights];
float *lightProb = new float[numLights];
for(int i = 0; i < numLights; i++){
if(lights[i]->isPhotonSource()){
powTot += lights[i]->getPhotonIntensity().Grey();
lightPow[i] = powTot;
}else{
lightPow[i] = -1.0;
}
}
for(int i = 0; i < numLights; i++)
lightProb[i] = lights[i]->getPhotonIntensity().Grey() / powTot;
// keep track of generated photons
int genPhotons = 0;
// setup random generator for photon mapping
mt19937 rnd;
uniform_real_distribution<float> dist{0.0, 1.0};
// fill our photon map
while(map->stored_photons < samplesPM){
// photon variables
Color pow;
int bounce = 1;
bool cont = true;
// select random light
Light *light;
float probLight;
int l = 0;
bool foundLight = false;
float randomPow = dist(rnd) * powTot;
while(!foundLight){
if(randomPow <= lightPow[l]){
light = lights[l];
probLight = lightProb[l];
foundLight = true;
}
l++;
}
// initialize our photon
pow = light->getPhotonIntensity() * 4.0 * M_PI / probLight;
Cone randPhoton = light->randomPhoton();
// ignore first hit (direct lighting) unless using Monte Carlo GI
bool store = false;
if(globalIllum)
store = true;
// loop for tracing a photon
while(cont){
// trace photon in scene
HitInfo hi = HitInfo();
bool hit = traceRay(randPhoton, hi);
// if hit, get the node's material
if(hit){
Node *n = hi.node;
Material *m;
if(n)
m = n->getMaterial();
// if there is a material that is a photon surface, calculate probabilities
if(m){
// first, save our photon hit (only if a photon surface & a front hit!)
if(m->isPhotonSurface() && hi.front && store){
float *power, *position, *direction;
power = new float[3];
pow.GetValue(power);
position = new float[3];
hi.p.GetValue(position);
direction = new float[3];
randPhoton.dir.GetValue(direction);
storePhoton(map, power, position, direction);
}
// pass our photon hit to the surface to get next photon (if not absorbed)
cont = m->randomPhotonBounce(randPhoton, pow, hi);
// be sure to store following protons
if(!store)
store = true;
}
// otherwise, terminate photon
else
cont = false;
// if we hit nothing, terminate photon
}else
cont = false;
// check our photon bounce count
bounce++;
if(bounce > bounceCountPM)
cont = false;
}
// add to our generated photons
genPhotons++;
}
// scale photon map by number of generated photons
float scale = 1.0 / ((float) genPhotons);
scalePhotonPower(map, scale);
// balance our photon map
pm = balancePhotonMap(map);
}
// start ray tracing loop (in parallel with threads)
thread t[numThreads];
for(int i = 0; i < numThreads; i++)
t[i] = thread(rayTracing, i);
// when finished, join all threads back to main
for(int i = 0; i < numThreads; i++)
t[i].join();
// output ray-traced image & z-buffer & sample count image (if set)
render.save("images/image.ppm");
if(zBuffer){
render.computeZImage();
render.saveZImage("images/imageZ.ppm");
}
if(sampleCount){
render.computeSampleImage();
render.saveSampleImage("images/imageSample.ppm");
}
}
// ray tracing loop (for an individual pixel)
void rayTracing(int i){
// initial starting pixel
int pixel = i;
// setup random generator for anti-aliasing & depth-of-field
mt19937 rnd;
uniform_real_distribution<float> dist{0.0, 1.0};
// create new light list for thread
LightList threadLights;
threadLights.deleteAll();
// update our thread light list
threadLights = lights;
// if necessary, add new irradiance map light
if(globalIllum && irradCache){
IrradianceMapLight *l = new IrradianceMapLight();
string name = "irradianceMap";
Light *light = NULL;
light = l;
light->setName(name);
threadLights.push_back(light);
}
// if necessary, add a photon map light
if(photonMap && !globalIllum){
PhotonMapLight *l = new PhotonMapLight();
l->setPhotonMap(pm, photonRad, maxPhotons);
string name = "photonMap";
Light *light = NULL;
light = l;
light->setName(name);
threadLights.push_back(light);
}
// if necessary, add a Monte Carlo photon map light
if(photonMap && globalIllum){
MonteCarloPhotonMapLight *l = new MonteCarloPhotonMapLight();
l->setPhotonMap(pm, photonRad, maxPhotons);
l->setEnvironment(environment);
l->setSamples(samplesGI);
string name = "monteCarloPhotonMap";
Light *light = NULL;
light = l;
light->setName(name);
threadLights.push_back(light);
}
// thread continuation condition
while(pixel < size){
// number of samples
int s = 0;
// establish pixel location (center)
float pX = pixel % w;
float pY = pixel / w;
// color values to store across samples
Color col;
Color colAvg;
float zAvg = 0.0;
float rVar = 0.0;
float gVar = 0.0;
float bVar = 0.0;
float var = sampleThreshold;
float brightness = 0.0;
// random rotation of Halton sequence on circle of confusion
float dcR = dist(rnd) * 2.0 * M_PI;
// if necessary, update irradiance map light with indirect color
if(globalIllum && irradCache){
Color c;
float z;
Point N;
ColorIM cim;
cim.c = c;
cim.z = z;
cim.N = N;
im.Eval(cim, pX, pY);
int index = threadLights.size() - 1;
Light *light = threadLights[index];
light->setColor(cim.c);
}
// compute multi-adaptive sampling for each pixel (anti-aliasing)
while(s < sampleMin || (s != sampleMax && (rVar * perR > var + brightness * var || gVar * perG > var + brightness * var || bVar * perB > var + brightness * var))){
// grab Halton sequence to shift point by on image plane
float dpX = centerHalton(Halton(s, 3));
float dpY = centerHalton(Halton(s, 2));
// grab Halton sequence to shift point along circle of confusion
float dcS = sqrt(Halton(s, 2)) * camera.dof;
// grab Halton sequence to shift point around circle of confusion
float dcT = Halton(s, 3) * 2.0 * M_PI;
// compute the offset for depth of field sampling
Point posOffset = (*dVx * cos(dcR + dcT) + *dVy * sin(dcR + dcT)) * dcS;
// transform ray into world space (offset by Halton seqeunce for sampling)
Point rayDir = cameraRay(pX + dpX, pY + dpY, posOffset);
Cone *ray = new Cone();
ray->pos = camera.pos + c->transformFrom(posOffset);
ray->dir = c->transformFrom(rayDir);
ray->radius = 0.0;
ray->tan = dXV->x / (2.0 * imageDistance);
// traverse through scene DOM
// transform rays into model space
// detect ray intersections and get back HitInfo
HitInfo hi = HitInfo();
bool hit = traceRay(*ray, hi);
// update z-buffer, if necessary
if(zBuffer)
zAvg = (zAvg * s + hi.z) / (float) (s + 1);
// if hit, get the node's material
if(hit){
Node *n = hi.node;
Material *m;
if(n)
m = n->getMaterial();
// if there is a material, shade the pixel
// 5-passes for reflections and refractions
if(m)
col = m->shade(*ray, hi, threadLights, bounceCount);
// otherwise color it white (as a hit)
else
col.Set(0.929, 0.929, 0.929);
// if we hit nothing, draw the background
}else{
Point p = Point((float) pX / w, (float) pY / h, 0.0);
Color b = background.sample(p);
col = b;
}
// compute average color
float rAvg = (colAvg.r * s + col.r) / (float) (s + 1);
float gAvg = (colAvg.g * s + col.g) / (float) (s + 1);
float bAvg = (colAvg.b * s + col.b) / (float) (s + 1);
colAvg.Set(rAvg, gAvg, bAvg);
// compute color variances
rVar = (rVar * s + (col.r - rAvg) * (col.r - rAvg)) / (float) (s + 1);
gVar = (gVar * s + (col.g - gAvg) * (col.g - gAvg)) / (float) (s + 1);
bVar = (bVar * s + (col.b - bAvg) * (col.b - bAvg)) / (float) (s + 1);
// calculate and update brightness average using XYZ and Lab space
float Y = perR * rAvg + perG * gAvg + perB * bAvg;
float Y13 = Y;
if(Y13 > Ycutoff)
Y13 = pow(Y13, 1.0 / 3.0);
else
Y13 = Yprecalc * Y13 + (4.0 / 29.0);
brightness = (116.0 * Y13 - 16.0) / 100.0;
// increment sample count
s++;
// watch for errors at any individual sample, terminate thread if so
if(colAvg[0] != colAvg[0] || colAvg[1] != colAvg[1] || colAvg[2] != colAvg[2]){
cout << "ERROR - pixel " << pixel << " & sample " << s << endl;
s = sampleMax;
pixel = size;
}
}
// gamma correction
if(gammaCorr){
colAvg.r = pow(colAvg.r, 1.0 / 2.2);
colAvg.g = pow(colAvg.g, 1.0 / 2.2);
colAvg.b = pow(colAvg.b, 1.0 / 2.2);
}
// color the pixel image
img[pixel] = Color24(colAvg);
// update the z-buffer image, if necessary
if(zBuffer)
zImg[pixel] = zAvg;
// update the sample count image, if necessary
if(sampleCount)
sampleImg[pixel] = s;
// re-assign next pixel (naive, but works)
pixel += numThreads;
}
}
// irradiance cache (for global illumination & indirect lighting at a single pixel)
void irradianceCache(int i, int m, LightList lightCache){
// establish pixel location (center)
float pX = i % w;
float pY = i / w;
// color value for cache
Color col;
// set offset to zero
Point posOffset = Point(0,0,0);
// transform ray into world space
Point rayDir = cameraRay(pX, pY, posOffset);
Cone *ray = new Cone();
ray->pos = camera.pos;
ray->dir = c->transformFrom(rayDir);
ray->radius = 0.0;
ray->tan = dXV->x / (2.0 * imageDistance);
// traverse through scene DOM
// transform rays into model space
// detect ray intersections and get back HitInfo
HitInfo hi = HitInfo();
bool hit = traceRay(*ray, hi);
// if hit, get the node's material
if(hit){
Node *n = hi.node;
Material *m;
if(n)
m = n->getMaterial();
// if there is a material, get our indirect light color for cache
if(m)
col = m->shade(*ray, hi, lightCache);
}
// set our irradiance map variables
ColorIM cim;
cim.c = col;
cim.z = hi.z;
cim.N = hi.n;
im.Set(m, cim);
}
// create variables for camera ray generation
void cameraRayVars(){
float fov = camera.fov * M_PI / 180.0;
float aspectRatio = (float) w / (float) h;
imageDistance = camera.focalDist;
float imageTipY = imageDistance * tan(fov / 2.0);
float imageTipX = imageTipY * aspectRatio;
float dX = (2.0 * imageTipX) / (float) w;
float dY = (2.0 * imageTipY) / (float) h;
imageTopLeftV = new Point(-imageTipX, imageTipY, -imageDistance);
dXV = new Point(dX, 0.0, 0.0);
dYV = new Point(0.0, -dY, 0.0);
firstPixel = *imageTopLeftV + (*dXV * 0.5) + (*dYV * 0.5);
// set up camera transformation (only need to rotate coordinates)
c = new Transformation();
Matrix *rotate = new cyMatrix3f();
rotate->Set(camera.cross, camera.up, -camera.dir);
c->transform(*rotate);
// get normalized rays on the focal plane
dVx = new Point(1.0, 0.0, 0.0);
dVy = new Point(0.0, 1.0, 0.0);
}
// compute camera ray direction
Point cameraRay(float pX, float pY, Point offset){
Point ray = firstPixel + (*dXV * pX) + (*dYV * pY) - offset;
ray.Normalize();
return ray;
}