-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluation.py
129 lines (101 loc) · 4.46 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import argparse
import json
import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from monai.networks.nets import UNet
from monai.networks.layers import Norm, Act
from loader import TuftsDataset
from augmentation import get_transorms
from metric import MeanDiceScore
from loss import MeanDiceLoss
def evaluate(device, model, data_loader, criterion, metric):
len_dl = len(data_loader)
Loss, Dice = [], []
with torch.no_grad():
model.eval()
for batch_data in tqdm.tqdm(data_loader, total=len_dl):
inputs = batch_data["img"].to(device)
targets = batch_data["seg"].to(device)
outputs = model(inputs)
outputs = nn.Softmax(dim=1)(outputs)
loss = criterion(outputs, targets)
dice = metric(outputs, targets)
Loss.append(loss.cpu().numpy())
Dice.append(dice.cpu().numpy())
return Loss, Dice
if __name__ == "__main__":
parser = argparse.ArgumentParser("Evaluation script", add_help=False)
parser.add_argument("-md", "--model_dir", type=str, help="model directory")
parser.add_argument("-d", "--device", default="mps", type=str, help="device type")
parser.add_argument("-g", "--gpu_id", default=0, type=int, help="GPU-ID position")
parser.add_argument("-bs", "--batch_size", default=1, type=int, help="batch size")
args = parser.parse_args()
model_path = os.path.join(args.model_dir, "model.pt")
assert os.path.exists(model_path) == True
jfile = json.load(open("data.json"))
class_names = jfile["class_names"]
num_classes = len(class_names)
class_weights = torch.tensor(list(jfile["class_weights"].values()), dtype=torch.float32)
# set device
if args.device == "mps" and torch.backends.mps.is_available():
device = args.device + ":" + str(args.gpu_id)
else:
device = "cpu"
print(f"Using {device} device.")
# create datasets
new_shape = (256, 512)
valid_transform = get_transorms(
new_shape,
num_classes=num_classes
)
train_ds = TuftsDataset(jfile["train"], masking=True, transform=valid_transform)
valid_ds = TuftsDataset(jfile["valid"], masking=True, transform=valid_transform)
test_ds = TuftsDataset(jfile["test"], masking=True, transform=valid_transform)
# create dataloaders
batch_size = args.batch_size
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=False, num_workers=4)
valid_loader = DataLoader(valid_ds, batch_size=batch_size, shuffle=False, num_workers=4)
test_loader = DataLoader(test_ds, batch_size=batch_size, shuffle=False, num_workers=4)
# build model
model = UNet(
spatial_dims = 2,
in_channels = 1,
out_channels = num_classes,
channels = (32, 64, 128, 256, 512),
strides = (2, 2, 2, 2),
num_res_units = 2,
norm = Norm.BATCH,
act = Act.LEAKYRELU
).to(device)
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["model_state_dict"])
print("Model loaded.")
# loss function and dice metric
metric = MeanDiceScore(softmax=False, weights=None, epsilon=0.)
criterion = MeanDiceLoss(softmax=False, weights=class_weights)
# evaluate model
print(f"Evaluating a model over the training, validation, and test dataset:\n")
train_loss, train_dice = evaluate(device, model, train_ds, criterion, metric)
valid_loss, valid_dice = evaluate(device, model, valid_ds, criterion, metric)
test_loss, test_dice = evaluate(device, model, test_ds, criterion, metric)
print(len(train_loss), len(train_dice))
print(f"Training: {np.mean(train_loss, 0):.4f} loss, {np.nanmean(train_dice, 0):.4f} dice.")
print(f"Validation: {np.mean(valid_loss, 0):.4f} loss, {np.nanmean(valid_dice, 0):.4f} dice.")
print(f"Test: {np.mean(test_loss, 0):.4f} loss, {np.nanmean(test_dice, 0):.4f} dice.")
out = {
"file_name": [],
"set_name": ["train"]*len(jfile["train"]) + ["valid"]*len(jfile["valid"]) + ["test"]*len(jfile["test"]),
"loss": train_loss + valid_loss + test_loss,
"dice": train_dice + valid_dice + test_dice
}
for set_name in ["train", "valid", "test"]:
for i, data in enumerate(jfile[set_name]):
out["file_name"].append(data["img"])
df = pd.DataFrame(out)
df.sort_values(by=["file_name"])
df.to_csv("evaluation_results.csv")