-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_graphs.py
53 lines (41 loc) · 1.41 KB
/
create_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import glob
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import math
from matplotlib2tikz import save as tikz_save
#print(pd.concat([df1,df2],axis=1, join_axes=[df1.index], keys=['foo', 'bar']))
'''
surplus_df_av = surplus_df.groupby(0).mean()
time_sum_df = time_df.groupby(0).sum()
num_trades_sum_df = num_trades_df.groupby(0).sum()
av_time_df = time_sum_df / num_trades_sum_df
'''
def plot_data(df, dof, t, name):
group = df.groupby(0)
mean_df = group.mean()
std_df = group.std(ddof=1)
err_df = t * (std_df / math.sqrt(dof))
mean_df.plot(yerr=err_df, capsize=1)
#plt.show()
tikz_save(name + ".tex")
#av_time_df.plot()
#plt.show()
if __name__ == "__main__":
dfs = {}
result_files = glob.glob("results/tmp/*.csv")
for r in result_files:
results = pd.read_csv(r, header=None, index_col=0)
dfs[r] = results
all_results = pd.concat(dfs,axis=1)
surplus_df = all_results.xs(1, axis=1, level=1)
time_df = all_results.xs(2, axis=1, level=1)
num_trades_df = all_results.xs(3, axis=1, level=1)
rmsd_df = all_results.xs(5, axis=1, level=1)
print(num_trades_df)
dof = surplus_df.groupby(0).count().iloc[0].iloc[0]-1 # Degrees of freedom
print(dof)
t = stats.t.ppf(0.95, dof)
plot_data(surplus_df, dof, t, "surplus")
plot_data(time_df / num_trades_df, dof, t, "time")
plot_data(rmsd_df, dof, t, "rmsd")