diff --git a/R/corrp.R b/R/corrp.R index 2f21a40..5f28f46 100644 --- a/R/corrp.R +++ b/R/corrp.R @@ -39,7 +39,8 @@ #' p.value param. If the statistical tests do not obtain a significance greater/less #' than p.value the value of variable `isig` will be `FALSE`.\cr #' - There is no statistical significance test for the pps algorithm. By default `isig` is TRUE.\cr -#' - If any errors occur during operations the association measure(`infer.value`) will be `NA`. +#' - If any errors occur during operations the association measure(`infer.value`) will be `NA`.\cr +#' - The result `data` and `index` will have \eqn{N^2} rows, where N is the number of variables of the input data. #' #' @param df \[\code{data.frame(1)}]\cr input data frame. #' @param parallel \[\code{logical(1)}]\cr If its TRUE run the operations in parallel backend. diff --git a/man/corrp.Rd b/man/corrp.Rd index a3742d4..cf87330 100644 --- a/man/corrp.Rd +++ b/man/corrp.Rd @@ -91,7 +91,8 @@ list with two tables: data and index.\cr p.value param. If the statistical tests do not obtain a significance greater/less than p.value the value of variable `isig` will be `FALSE`.\cr - There is no statistical significance test for the pps algorithm. By default `isig` is TRUE.\cr -- If any errors occur during operations the association measure(`infer.value`) will be `NA`. +- If any errors occur during operations the association measure(`infer.value`) will be `NA`.\cr +- The result `data` and `index` will have \eqn{N^2} rows, where N is the number of variables of the input data. } \description{ Compute correlations type analysis on mixed classes columns of larges dataframes