-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconvex_hull.js
132 lines (113 loc) · 4.48 KB
/
convex_hull.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright 2001, softSurfer (www.softsurfer.com)
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application.
// http://softsurfer.com/Archive/algorithm_0203/algorithm_0203.htm
// Assume that a class is already given for the object:
// Point with coordinates {float x, y;}
//===================================================================
// isLeft(): tests if a point is Left|On|Right of an infinite line.
// Input: three points P0, P1, and P2
// Return: >0 for P2 left of the line through P0 and P1
// =0 for P2 on the line
// <0 for P2 right of the line
function sortPointX(a, b) {
return a.lng() - b.lng();
}
function sortPointY(a, b) {
return a.lat() - b.lat();
}
function isLeft(P0, P1, P2) {
return (P1.lng() - P0.lng()) * (P2.lat() - P0.lat()) - (P2.lng() - P0.lng()) * (P1.lat() - P0.lat());
}
//===================================================================
// chainHull_2D(): A.M. Andrew's monotone chain 2D convex hull algorithm
// http://softsurfer.com/Archive/algorithm_0109/algorithm_0109.htm
//
// Input: P[] = an array of 2D points
// presorted by increasing x- and y-coordinates
// n = the number of points in P[]
// Output: H[] = an array of the convex hull vertices (max is n)
// Return: the number of points in H[]
function chainHull_2D(P, n, H) {
// the output array H[] will be used as the stack
var bot = 0,
top = (-1); // indices for bottom and top of the stack
var i; // array scan index
// Get the indices of points with min x-coord and min|max y-coord
var minmin = 0,
minmax;
var xmin = P[0].lng();
for (i = 1; i < n; i++) {
if (P[i].lng() != xmin) {
break;
}
}
minmax = i - 1;
if (minmax == n - 1) { // degenerate case: all x-coords == xmin
H[++top] = P[minmin];
if (P[minmax].lat() != P[minmin].lat()) // a nontrivial segment
H[++top] = P[minmax];
H[++top] = P[minmin]; // add polygon endpoint
return top + 1;
}
// Get the indices of points with max x-coord and min|max y-coord
var maxmin, maxmax = n - 1;
var xmax = P[n - 1].lng();
for (i = n - 2; i >= 0; i--) {
if (P[i].lng() != xmax) {
break;
}
}
maxmin = i + 1;
// Compute the lower hull on the stack H
H[++top] = P[minmin]; // push minmin point onto stack
i = minmax;
while (++i <= maxmin) {
// the lower line joins P[minmin] with P[maxmin]
if (isLeft(P[minmin], P[maxmin], P[i]) >= 0 && i < maxmin) {
continue; // ignore P[i] above or on the lower line
}
while (top > 0) { // there are at least 2 points on the stack
// test if P[i] is left of the line at the stack top
if (isLeft(H[top - 1], H[top], P[i]) > 0) {
break; // P[i] is a new hull vertex
}
else {
top--; // pop top point off stack
}
}
H[++top] = P[i]; // push P[i] onto stack
}
// Next, compute the upper hull on the stack H above the bottom hull
if (maxmax != maxmin) { // if distinct xmax points
H[++top] = P[maxmax]; // push maxmax point onto stack
}
bot = top; // the bottom point of the upper hull stack
i = maxmin;
while (--i >= minmax) {
// the upper line joins P[maxmax] with P[minmax]
if (isLeft(P[maxmax], P[minmax], P[i]) >= 0 && i > minmax) {
continue; // ignore P[i] below or on the upper line
}
while (top > bot) { // at least 2 points on the upper stack
// test if P[i] is left of the line at the stack top
if (isLeft(H[top - 1], H[top], P[i]) > 0) {
break; // P[i] is a new hull vertex
}
else {
top--; // pop top point off stack
}
}
if (P[i].lng() == H[0].lng() && P[i].lat() == H[0].lat()) {
return top + 1; // special case (mgomes)
}
H[++top] = P[i]; // push P[i] onto stack
}
if (minmax != minmin) {
H[++top] = P[minmin]; // push joining endpoint onto stack
}
return top + 1;
}