forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
195 lines (163 loc) · 7.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training script."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
from absl import logging
import tensorflow.compat.v1 as tf
from cs_gan import file_utils
from cs_gan import gan
from cs_gan import image_metrics
from cs_gan import utils
flags.DEFINE_integer(
'num_training_iterations', 200000,
'Number of training iterations.')
flags.DEFINE_integer(
'batch_size', 64, 'Training batch size.')
flags.DEFINE_integer(
'num_latents', 128, 'The number of latents')
flags.DEFINE_integer(
'summary_every_step', 1000,
'The interval at which to log debug ops.')
flags.DEFINE_integer(
'image_metrics_every_step', 2000,
'The interval at which to log (expensive) image metrics.')
flags.DEFINE_integer(
'export_every', 10,
'The interval at which to export samples.')
flags.DEFINE_integer(
'num_eval_samples', 10000,
'The number of samples used to evaluate FID/IS')
flags.DEFINE_string(
'dataset', 'cifar', 'The dataset used for learning (cifar|mnist.')
flags.DEFINE_float(
'optimisation_cost_weight', 3., 'weight for latent optimisation cost.')
flags.DEFINE_integer(
'num_z_iters', 3, 'The number of latent optimisation steps.'
'It falls back to vanilla GAN when num_z_iters is set to 0.')
flags.DEFINE_float(
'z_step_size', 0.01, 'Step size for latent optimisation.')
flags.DEFINE_string(
'z_project_method', 'norm', 'The method to project z.')
flags.DEFINE_string(
'output_dir', '/tmp/cs_gan/gan', 'Location where to save output files.')
flags.DEFINE_float('disc_lr', 2e-4, 'Discriminator Learning rate.')
flags.DEFINE_float('gen_lr', 2e-4, 'Generator Learning rate.')
flags.DEFINE_bool(
'run_real_data_metrics', False,
'Whether or not to run image metrics on real data.')
flags.DEFINE_bool(
'run_sample_metrics', True,
'Whether or not to run image metrics on samples.')
FLAGS = flags.FLAGS
# Log info level (for Hooks).
tf.logging.set_verbosity(tf.logging.INFO)
def main(argv):
del argv
utils.make_output_dir(FLAGS.output_dir)
data_processor = utils.DataProcessor()
images = utils.get_train_dataset(data_processor, FLAGS.dataset,
FLAGS.batch_size)
logging.info('Generator learning rate: %d', FLAGS.gen_lr)
logging.info('Discriminator learning rate: %d', FLAGS.disc_lr)
# Construct optimizers.
disc_optimizer = tf.train.AdamOptimizer(FLAGS.disc_lr, beta1=0.5, beta2=0.999)
gen_optimizer = tf.train.AdamOptimizer(FLAGS.gen_lr, beta1=0.5, beta2=0.999)
# Create the networks and models.
generator = utils.get_generator(FLAGS.dataset)
metric_net = utils.get_metric_net(FLAGS.dataset)
model = gan.GAN(metric_net, generator,
FLAGS.num_z_iters, FLAGS.z_step_size,
FLAGS.z_project_method, FLAGS.optimisation_cost_weight)
prior = utils.make_prior(FLAGS.num_latents)
generator_inputs = prior.sample(FLAGS.batch_size)
model_output = model.connect(images, generator_inputs)
optimization_components = model_output.optimization_components
debug_ops = model_output.debug_ops
samples = generator(generator_inputs, is_training=False)
global_step = tf.train.get_or_create_global_step()
# We pass the global step both to the disc and generator update ops.
# This means that the global step will not be the same as the number of
# iterations, but ensures that hooks which rely on global step work correctly.
disc_update_op = disc_optimizer.minimize(
optimization_components['disc'].loss,
var_list=optimization_components['disc'].vars,
global_step=global_step)
gen_update_op = gen_optimizer.minimize(
optimization_components['gen'].loss,
var_list=optimization_components['gen'].vars,
global_step=global_step)
# Get data needed to compute FID. We also compute metrics on
# real data as a sanity check and as a reference point.
eval_real_data = utils.get_real_data_for_eval(FLAGS.num_eval_samples,
FLAGS.dataset,
split='train')
def sample_fn(x):
return utils.optimise_and_sample(x, module=model,
data=None, is_training=False)[0]
if FLAGS.run_sample_metrics:
sample_metrics = image_metrics.get_image_metrics_for_samples(
eval_real_data, sample_fn,
prior, data_processor,
num_eval_samples=FLAGS.num_eval_samples)
else:
sample_metrics = {}
if FLAGS.run_real_data_metrics:
data_metrics = image_metrics.get_image_metrics(
eval_real_data, eval_real_data)
else:
data_metrics = {}
sample_exporter = file_utils.FileExporter(
os.path.join(FLAGS.output_dir, 'samples'))
# Hooks.
debug_ops['it'] = global_step
# Abort training on Nans.
nan_disc_hook = tf.train.NanTensorHook(optimization_components['disc'].loss)
nan_gen_hook = tf.train.NanTensorHook(optimization_components['gen'].loss)
# Step counter.
step_conter_hook = tf.train.StepCounterHook()
checkpoint_saver_hook = tf.train.CheckpointSaverHook(
checkpoint_dir=utils.get_ckpt_dir(FLAGS.output_dir), save_secs=10 * 60)
loss_summary_saver_hook = tf.train.SummarySaverHook(
save_steps=FLAGS.summary_every_step,
output_dir=os.path.join(FLAGS.output_dir, 'summaries'),
summary_op=utils.get_summaries(debug_ops))
metrics_summary_saver_hook = tf.train.SummarySaverHook(
save_steps=FLAGS.image_metrics_every_step,
output_dir=os.path.join(FLAGS.output_dir, 'summaries'),
summary_op=utils.get_summaries(sample_metrics))
hooks = [checkpoint_saver_hook, metrics_summary_saver_hook,
nan_disc_hook, nan_gen_hook, step_conter_hook,
loss_summary_saver_hook]
# Start training.
with tf.train.MonitoredSession(hooks=hooks) as sess:
logging.info('starting training')
for key, value in sess.run(data_metrics).items():
logging.info('%s: %d', key, value)
for i in range(FLAGS.num_training_iterations):
sess.run(disc_update_op)
sess.run(gen_update_op)
if i % FLAGS.export_every == 0:
samples_np, data_np = sess.run([samples, images])
# Create an object which gets data and does the processing.
data_np = data_processor.postprocess(data_np)
samples_np = data_processor.postprocess(samples_np)
sample_exporter.save(samples_np, 'samples')
sample_exporter.save(data_np, 'data')
if __name__ == '__main__':
app.run(main)