forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
234 lines (176 loc) · 7.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# python3
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tools for latent optimisation."""
import collections
import os
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_probability as tfp
from cs_gan import nets
tfd = tfp.distributions
class ModelOutputs(
collections.namedtuple('AdversarialModelOutputs',
['optimization_components', 'debug_ops'])):
"""All the information produced by the adversarial module.
Fields:
* `optimization_components`: A dictionary. Each entry in this dictionary
corresponds to a module to train using their own optimizer. The keys are
names of the components, and the values are `common.OptimizationComponent`
instances. The keys of this dict can be made keys of the configuration
used by the main train loop, to define the configuration of the
optimization details for each module.
* `debug_ops`: A dictionary, from string to a scalar `tf.Tensor`. Quantities
used for tracking training.
"""
class OptimizationComponent(
collections.namedtuple('OptimizationComponent', ['loss', 'vars'])):
"""Information needed by the optimizer to train modules.
Usage:
`optimizer.minimize(
opt_compoment.loss, var_list=opt_component.vars)`
Fields:
* `loss`: A `tf.Tensor` the loss of the module.
* `vars`: A list of variables, the ones which will be used to minimize the
loss.
"""
def cross_entropy_loss(logits, expected):
"""The cross entropy classification loss between logits and expected values.
The loss proposed by the original GAN paper: https://arxiv.org/abs/1406.2661.
Args:
logits: a `tf.Tensor`, the model produced logits.
expected: a `tf.Tensor`, the expected output.
Returns:
A scalar `tf.Tensor`, the average loss obtained on the given inputs.
Raises:
ValueError: if the logits do not have shape [batch_size, 2].
"""
num_logits = logits.get_shape()[1]
if num_logits != 2:
raise ValueError(('Invalid number of logits for cross_entropy_loss! '
'cross_entropy_loss supports only 2 output logits!'))
return tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=expected))
def optimise_and_sample(init_z, module, data, is_training):
"""Optimising generator latent variables and sample."""
if module.num_z_iters == 0:
z_final = init_z
else:
init_loop_vars = (0, _project_z(init_z, module.z_project_method))
loop_cond = lambda i, _: i < module.num_z_iters
def loop_body(i, z):
loop_samples = module.generator(z, is_training)
gen_loss = module.gen_loss_fn(data, loop_samples)
z_grad = tf.gradients(gen_loss, z)[0]
z -= module.z_step_size * z_grad
z = _project_z(z, module.z_project_method)
return i + 1, z
# Use the following static loop for debugging
# z = init_z
# for _ in xrange(num_z_iters):
# _, z = loop_body(0, z)
# z_final = z
_, z_final = tf.while_loop(loop_cond,
loop_body,
init_loop_vars)
return module.generator(z_final, is_training), z_final
def get_optimisation_cost(initial_z, optimised_z):
optimisation_cost = tf.reduce_mean(
tf.reduce_sum((optimised_z - initial_z)**2, -1))
return optimisation_cost
def _project_z(z, project_method='clip'):
"""To be used for projected gradient descent over z."""
if project_method == 'norm':
z_p = tf.nn.l2_normalize(z, axis=-1)
elif project_method == 'clip':
z_p = tf.clip_by_value(z, -1, 1)
else:
raise ValueError('Unknown project_method: {}'.format(project_method))
return z_p
class DataProcessor(object):
def preprocess(self, x):
return x * 2 - 1
def postprocess(self, x):
return (x + 1) / 2.
def _get_np_data(data_processor, dataset, split='train'):
"""Get the dataset as numpy arrays."""
index = 0 if split == 'train' else 1
if dataset == 'mnist':
# Construct the dataset.
x, _ = tf.keras.datasets.mnist.load_data()[index]
# Note: tf dataset is binary so we convert it to float.
x = x.astype(np.float32)
x = x / 255.
x = x.reshape((-1, 28, 28, 1))
if dataset == 'cifar':
x, _ = tf.keras.datasets.cifar10.load_data()[index]
x = x.astype(np.float32)
x = x / 255.
if data_processor:
# Normalize data if a processor is given.
x = data_processor.preprocess(x)
return x
def make_output_dir(output_dir):
logging.info('Creating output dir %s', output_dir)
if not tf.gfile.IsDirectory(output_dir):
tf.gfile.MakeDirs(output_dir)
def get_ckpt_dir(output_dir):
ckpt_dir = os.path.join(output_dir, 'ckpt')
if not tf.gfile.IsDirectory(ckpt_dir):
tf.gfile.MakeDirs(ckpt_dir)
return ckpt_dir
def get_real_data_for_eval(num_eval_samples, dataset, split='valid'):
data = _get_np_data(data_processor=None, dataset=dataset, split=split)
data = data[:num_eval_samples]
return tf.constant(data)
def get_summaries(ops):
summaries = []
for name, op in ops.items():
# Ensure to log the value ops before writing them in the summary.
# We do this instead of a hook to ensure IS/FID are never computed twice.
print_op = tf.print(name, [op], output_stream=tf.logging.info)
with tf.control_dependencies([print_op]):
summary = tf.summary.scalar(name, op)
summaries.append(summary)
return summaries
def get_train_dataset(data_processor, dataset, batch_size):
"""Creates the training data tensors."""
x_train = _get_np_data(data_processor, dataset, split='train')
# Create the TF dataset.
dataset = tf.data.Dataset.from_tensor_slices(x_train)
# Shuffle and repeat the dataset for training.
# This is required because we want to do multiple passes through the entire
# dataset when training.
dataset = dataset.shuffle(100000).repeat()
# Batch the data and return the data batch.
one_shot_iterator = dataset.batch(batch_size).make_one_shot_iterator()
data_batch = one_shot_iterator.get_next()
return data_batch
def get_generator(dataset):
if dataset == 'mnist':
return nets.MLPGeneratorNet()
if dataset == 'cifar':
return nets.SNGenNet()
def get_metric_net(dataset, num_outputs=2):
if dataset == 'mnist':
return nets.MLPMetricNet(num_outputs)
if dataset == 'cifar':
return nets.SNMetricNet(num_outputs)
def make_prior(num_latents):
# Zero mean, unit variance prior.
prior_mean = tf.zeros(shape=(num_latents), dtype=tf.float32)
prior_scale = tf.ones(shape=(num_latents), dtype=tf.float32)
return tfd.Normal(loc=prior_mean, scale=prior_scale)