forked from webmachinelearning/webnn-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenet_nhwc.js
160 lines (147 loc) · 6.4 KB
/
mobilenet_nhwc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
'use strict';
import {buildConstantByNpy, computePadding2DForAutoPad, weightsOrigin} from '../common/utils.js';
/* eslint max-len: ["error", {"code": 120}] */
// MobileNet V2 model with 'nhwc' input layout
export class MobileNetV2Nhwc {
constructor() {
this.context_ = null;
this.deviceType_ = null;
this.builder_ = null;
this.graph_ = null;
this.weightsUrl_ = weightsOrigin() +
'/test-data/models/mobilenetv2_nhwc/weights/';
this.inputOptions = {
mean: [127.5, 127.5, 127.5],
std: [127.5, 127.5, 127.5],
inputLayout: 'nhwc',
labelUrl: './labels/labels1001.txt',
inputDimensions: [1, 224, 224, 3],
};
this.outputDimensions = [1, 1001];
}
async buildConv_(input, weightsSubName, biasSubName, relu6, options) {
const weightsName = this.weightsUrl_ + 'Const_' + weightsSubName + '.npy';
const weights = await buildConstantByNpy(this.builder_, weightsName);
const biasName = this.weightsUrl_ + 'MobilenetV2_' + biasSubName + '_bias.npy';
const bias = buildConstantByNpy(this.builder_, biasName);
options.inputLayout = 'nhwc';
options.bias = await bias;
// WebNN spec drops autoPad support, compute the explicit padding instead.
if (options.autoPad == 'same-upper') {
options.padding =
computePadding2DForAutoPad(
/* nwhc */[await input.shape()[1], await input.shape()[2]],
/* ohwi or ihwo */[weights.shape()[1], weights.shape()[2]],
options.strides, options.dilations, options.autoPad);
}
const conv2d = this.builder_.conv2d(await input, weights, options);
if (relu6) {
return this.builder_.clamp(conv2d, {minValue: 0, maxValue: 6});
}
return conv2d;
}
async buildLinearBottleneck_(input, weightsNameArray, biasName, dwiseOptions, shortcut = true) {
const autoPad = 'same-upper';
const biasPrefix = 'expanded_conv_' + biasName;
dwiseOptions.autoPad = autoPad;
dwiseOptions.filterLayout = 'ihwo';
const conv1x1Relu6 = this.buildConv_(
await input,
weightsNameArray[0],
`${biasPrefix}_expand_Conv2D`,
true,
{autoPad, filterLayout: 'ohwi'},
);
const dwise3x3Relu6 = this.buildConv_(
await conv1x1Relu6,
weightsNameArray[1],
`${biasPrefix}_depthwise_depthwise`,
true,
dwiseOptions,
);
const conv1x1Linear = this.buildConv_(
await dwise3x3Relu6,
weightsNameArray[2],
`${biasPrefix}_project_Conv2D`,
false,
{autoPad, filterLayout: 'ohwi'},
);
if (shortcut) {
return this.builder_.add(await input, await conv1x1Linear);
}
return await conv1x1Linear;
}
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.deviceType_ = contextOptions.deviceType;
this.builder_ = new MLGraphBuilder(this.context_);
const strides = [2, 2];
const autoPad = 'same-upper';
const filterLayout = 'ohwi';
const input = this.builder_.input('input', {
dataType: 'float32',
dimensions: this.inputOptions.inputDimensions,
});
const conv0 = this.buildConv_(
input, '90', 'Conv_Conv2D', true, {strides, autoPad, filterLayout});
const conv1 = this.buildConv_(
await conv0, '238', 'expanded_conv_depthwise_depthwise', true, {autoPad, groups: 32, filterLayout: 'ihwo'});
const conv2 = this.buildConv_(
await conv1, '167', 'expanded_conv_project_Conv2D', false, {autoPad, filterLayout});
const bottleneck0 = this.buildLinearBottleneck_(
await conv2, ['165', '99', '73'], '1', {strides, groups: 96}, false);
const bottleneck1 = this.buildLinearBottleneck_(
bottleneck0, ['3', '119', '115'], '2', {groups: 144});
const bottleneck2 = this.buildLinearBottleneck_(
bottleneck1, ['255', '216', '157'], '3', {strides, groups: 144}, false);
const bottleneck3 = this.buildLinearBottleneck_(
bottleneck2, ['227', '221', '193'], '4', {groups: 192});
const bottleneck4 = this.buildLinearBottleneck_(
bottleneck3, ['243', '102', '215'], '5', {groups: 192});
const bottleneck5 = this.buildLinearBottleneck_(
bottleneck4, ['226', '163', '229'], '6', {strides, groups: 192}, false);
const bottleneck6 = this.buildLinearBottleneck_(
bottleneck5, ['104', '254', '143'], '7', {groups: 384});
const bottleneck7 = this.buildLinearBottleneck_(
bottleneck6, ['25', '142', '202'], '8', {groups: 384});
const bottleneck8 = this.buildLinearBottleneck_(
bottleneck7, ['225', '129', '98'], '9', {groups: 384});
const bottleneck9 = this.buildLinearBottleneck_(
bottleneck8, ['169', '2', '246'], '10', {groups: 384}, false);
const bottleneck10 = this.buildLinearBottleneck_(
bottleneck9, ['162', '87', '106'], '11', {groups: 576});
const bottleneck11 = this.buildLinearBottleneck_(
bottleneck10, ['52', '22', '40'], '12', {groups: 576});
const bottleneck12 = this.buildLinearBottleneck_(
bottleneck11, ['114', '65', '242'], '13', {strides, groups: 576}, false);
const bottleneck13 = this.buildLinearBottleneck_(
bottleneck12, ['203', '250', '92'], '14', {groups: 960});
const bottleneck14 = this.buildLinearBottleneck_(
bottleneck13, ['133', '130', '258'], '15', {groups: 960});
const bottleneck15 = this.buildLinearBottleneck_(
bottleneck14, ['60', '248', '100'], '16', {groups: 960}, false);
const conv3 = this.buildConv_(
await bottleneck15, '71', 'Conv_1_Conv2D', true, {autoPad, filterLayout});
const averagePool2d = this.builder_.averagePool2d(await conv3, {windowDimensions: [7, 7], layout: 'nhwc'});
const conv4 = this.buildConv_(
averagePool2d, '222', 'Logits_Conv2d_1c_1x1_Conv2D', false, {autoPad, filterLayout});
const reshape = this.builder_.reshape(await conv4, [1, 1001]);
return await this.builder_.softmax(reshape);
}
async build(outputOperand) {
this.graph_ = await this.builder_.build({'output': outputOperand});
}
// Release the constant tensors of a model
dispose() {
// dispose() is only available in webnn-polyfill
if (this.graph_ !== null && 'dispose' in this.graph_) {
this.graph_.dispose();
}
}
async compute(inputBuffer, outputBuffer) {
const inputs = {'input': inputBuffer};
const outputs = {'output': outputBuffer};
const results = await this.context_.compute(this.graph_, inputs, outputs);
return results;
}
}