-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheccp2.c
486 lines (423 loc) · 23.7 KB
/
eccp2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/***********************************************************************************
* FourQlib: a high-performance crypto library based on the elliptic curve FourQ
*
* Copyright (c) Microsoft Corporation. All rights reserved.
*
* Abstract: ECC operations over GF(p^2) exploiting endomorphisms
*
* This code is based on the paper "FourQ: four-dimensional decompositions on a
* Q-curve over the Mersenne prime" by Craig Costello and Patrick Longa, in Advances
* in Cryptology - ASIACRYPT, 2015.
* Preprint available at http://eprint.iacr.org/2015/565.
************************************************************************************/
#include "FourQ_internal.h"
#if (USE_ENDO == true)
// Fixed GF(p^2) constants for the endomorphisms
static uint64_t ctau1[4] = {0x74DCD57CEBCE74C3, 0x1964DE2C3AFAD20C, 0x12, 0x0C};
static uint64_t ctaudual1[4] = {0x9ECAA6D9DECDF034, 0x4AA740EB23058652, 0x11, 0x7FFFFFFFFFFFFFF4};
static uint64_t cphi0[4] = {0xFFFFFFFFFFFFFFF7, 0x05, 0x4F65536CEF66F81A, 0x2553A0759182C329};
static uint64_t cphi1[4] = {0x07, 0x05, 0x334D90E9E28296F9, 0x62C8CAA0C50C62CF};
static uint64_t cphi2[4] = {0x15, 0x0F, 0x2C2CB7154F1DF391, 0x78DF262B6C9B5C98};
static uint64_t cphi3[4] = {0x03, 0x02, 0x92440457A7962EA4, 0x5084C6491D76342A};
static uint64_t cphi4[4] = {0x03, 0x03, 0xA1098C923AEC6855, 0x12440457A7962EA4};
static uint64_t cphi5[4] = {0x0F, 0x0A, 0x669B21D3C5052DF3, 0x459195418A18C59E};
static uint64_t cphi6[4] = {0x18, 0x12, 0xCD3643A78A0A5BE7, 0x0B232A8314318B3C};
static uint64_t cphi7[4] = {0x23, 0x18, 0x66C183035F48781A, 0x3963BC1C99E2EA1A};
static uint64_t cphi8[4] = {0xF0, 0xAA, 0x44E251582B5D0EF0, 0x1F529F860316CBE5};
static uint64_t cphi9[4] = {0xBEF, 0x870, 0x14D3E48976E2505, 0xFD52E9CFE00375B};
static uint64_t cpsi1[4] = {0xEDF07F4767E346EF, 0x2AF99E9A83D54A02, 0x13A, 0xDE};
static uint64_t cpsi2[4] = {0x143, 0xE4, 0x4C7DEB770E03F372, 0x21B8D07B99A81F03};
static uint64_t cpsi3[4] = {0x09, 0x06, 0x3A6E6ABE75E73A61, 0x4CB26F161D7D6906};
static uint64_t cpsi4[4] = {0xFFFFFFFFFFFFFFF6, 0x7FFFFFFFFFFFFFF9, 0xC59195418A18C59E, 0x334D90E9E28296F9};
// Fixed integer constants for the decomposition
// Close "offset" vector
static uint64_t c1 = {0x72482C5251A4559C};
static uint64_t c2 = {0x59F95B0ADD276F6C};
static uint64_t c3 = {0x7DD2D17C4625FA78};
static uint64_t c4 = {0x6BC57DEF56CE8877};
// Optimal basis vectors
static uint64_t b11 = {0x0906FF27E0A0A196};
static uint64_t b12 = {0x1363E862C22A2DA0};
static uint64_t b13 = {0x07426031ECC8030F};
static uint64_t b14 = {0x084F739986B9E651};
static uint64_t b21 = {0x1D495BEA84FCC2D4};
static uint64_t b24 = {0x25DBC5BC8DD167D0};
static uint64_t b31 = {0x17ABAD1D231F0302};
static uint64_t b32 = {0x02C4211AE388DA51};
static uint64_t b33 = {0x2E4D21C98927C49F};
static uint64_t b34 = {0x0A9E6F44C02ECD97};
static uint64_t b41 = {0x136E340A9108C83F};
static uint64_t b42 = {0x3122DF2DC3E0FF32};
static uint64_t b43 = {0x068A49F02AA8A9B5};
static uint64_t b44 = {0x18D5087896DE0AEA};
// Precomputed integers for fast-Babai rounding
static uint64_t ell1[4] = {0x259686E09D1A7D4F, 0xF75682ACE6A6BD66, 0xFC5BB5C5EA2BE5DF, 0x07};
static uint64_t ell2[4] = {0xD1BA1D84DD627AFB, 0x2BD235580F468D8D, 0x8FD4B04CAA6C0F8A, 0x03};
static uint64_t ell3[4] = {0x9B291A33678C203C, 0xC42BD6C965DCA902, 0xD038BF8D0BFFBAF6, 0x00};
static uint64_t ell4[4] = {0x12E5666B77E7FDC0, 0x81CBDC3714983D82, 0x1B073877A22D8410, 0x03};
/***********************************************/
/********** CURVE/SCALAR FUNCTIONS ***********/
static __inline void ecc_tau(point_extproj_t P)
{ // Apply tau mapping to a point, P = tau(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0, t1;
fp2sqr1271(P->x, t0); // t0 = X1^2
fp2sqr1271(P->y, t1); // t1 = Y1^2
fp2mul1271(P->x, P->y, P->x); // X = X1*Y1
fp2sqr1271(P->z, P->y); // Y = Z1^2
fp2add1271(t0, t1, P->z); // Z = X1^2+Y1^2
fp2sub1271(t1, t0, t0); // t0 = Y1^2-X1^2
fp2add1271(P->y, P->y, P->y); // Y = 2*Z1^2
fp2mul1271(P->x, t0, P->x); // X = X1*Y1*(Y1^2-X1^2)
fp2sub1271(P->y, t0, P->y); // Y = 2*Z1^2-(Y1^2-X1^2)
fp2mul1271(P->x, (felm_t*)&ctau1, P->x); // Xfinal = X*ctau1
fp2mul1271(P->y, P->z, P->y); // Yfinal = Y*Z
fp2mul1271(P->z, t0, P->z); // Zfinal = t0*Z
}
static __inline void ecc_tau_dual(point_extproj_t P)
{ // Apply tau_dual mapping to a point, P = tau_dual(P)
// Input: P = (X1:Y1:Z1) on Ehat in twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal) on E, where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
f2elm_t t0, t1;
fp2sqr1271(P->x, t0); // t0 = X1^2
fp2sqr1271(P->z, P->ta); // Ta = Z1^2
fp2sqr1271(P->y, t1); // t1 = Y1^2
fp2add1271(P->ta, P->ta, P->z); // Z = 2*Z1^2
fp2sub1271(t1, t0, P->ta); // Tafinal = Y1^2-X1^2
fp2add1271(t0, t1, t0); // t0 = X1^2+Y1^2
fp2mul1271(P->x, P->y, P->x); // X = X1*Y1
fp2sub1271(P->z, P->ta, P->z); // Z = 2*Z1^2-(Y1^2-X1^2)
fp2mul1271(P->x, (felm_t*)&ctaudual1, P->tb); // Tbfinal = ctaudual1*X1*X1
fp2mul1271(P->z, P->ta, P->y); // Yfinal = Z*Tafinal
fp2mul1271(P->tb, t0, P->x); // Xfinal = Tbfinal*t0
fp2mul1271(P->z, t0, P->z); // Zfinal = Z*t0
}
static __inline void ecc_delphidel(point_extproj_t P)
{ // Apply delta_phi_delta mapping to a point, P = delta(phi_W(delta_inv(P))),
// where phi_W is the endomorphism on the Weierstrass form.
// Input: P = (X1:Y1:Z1) on Ehat in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0, t1, t2, t3, t4, t5, t6;
fp2sqr1271(P->z, t4); // t4 = Z1^2
fp2mul1271(P->y, P->z, t3); // t3 = Y1*Z1
fp2mul1271(t4, (felm_t*)&cphi4, t0); // t0 = cphi4*t4
fp2sqr1271(P->y, t2); // t2 = Y1^2
fp2add1271(t0, t2, t0); // t0 = t0+t2
fp2mul1271(t3, (felm_t*)&cphi3, t1); // t1 = cphi3*t3
fp2sub1271(t0, t1, t5); // t5 = t0-t1
fp2add1271(t0, t1, t0); // t0 = t0+t1
fp2mul1271(t0, P->z, t0); // t0 = t0*Z1
fp2mul1271(t3, (felm_t*)&cphi1, t1); // t1 = cphi1*t3
fp2mul1271(t0, t5, t0); // t0 = t0*t5
fp2mul1271(t4, (felm_t*)&cphi2, t5); // t5 = cphi2*t4
fp2add1271(t2, t5, t5); // t5 = t2+t5
fp2sub1271(t1, t5, t6); // t6 = t1-t5
fp2add1271(t1, t5, t1); // t1 = t1+t5
fp2mul1271(t6, t1, t6); // t6 = t1*t6
fp2mul1271(t6, (felm_t*)&cphi0, t6); // t6 = cphi0*t6
fp2mul1271(P->x, t6, P->x); // X = X1*t6
fp2sqr1271(t2, t6); // t6 = t2^2
fp2sqr1271(t3, t2); // t2 = t3^2
fp2sqr1271(t4, t3); // t3 = t4^2
fp2mul1271(t2, (felm_t*)&cphi8, t1); // t1 = cphi8*t2
fp2mul1271(t3, (felm_t*)&cphi9, t5); // t5 = cphi9*t3
fp2add1271(t1, t6, t1); // t1 = t1+t6
fp2mul1271(t2, (felm_t*)&cphi6, t2); // t2 = cphi6*t2
fp2mul1271(t3, (felm_t*)&cphi7, t3); // t3 = cphi7*t3
fp2add1271(t1, t5, t1); // t1 = t1+t5
fp2add1271(t2, t3, t2); // t2 = t2+t3
fp2mul1271(t1, P->y, t1); // t1 = Y1*t1
fp2add1271(t6, t2, P->y); // Y = t6+t2
fp2mul1271(P->x, t1, P->x); // X = X*t1
fp2mul1271(P->y, (felm_t*)&cphi5, P->y); // Y = cphi5*Y
fpneg1271(P->x[1]); // Xfinal = X^p
fp2mul1271(P->y, P->z, P->y); // Y = Y*Z1
fp2mul1271(t0, t1, P->z); // Z = t0*t1
fp2mul1271(P->y, t0, P->y); // Y = Y*t0
fpneg1271(P->z[1]); // Zfinal = Z^p
fpneg1271(P->y[1]); // Yfinal = Y^p
}
static __inline void ecc_delpsidel(point_extproj_t P)
{ // Apply delta_psi_delta mapping to a point, P = delta(psi_W(delta_inv(P))),
// where psi_W is the endomorphism on the Weierstrass form.
// Input: P = (X1:Y1:Z1) on Ehat in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0, t1, t2;
fpneg1271(P->x[1]); // X = X1^p
fpneg1271(P->z[1]); // Z = Z1^p
fpneg1271(P->y[1]); // Y = Y1^p
fp2sqr1271(P->z, t2); // t2 = Z1^p^2
fp2sqr1271(P->x, t0); // t0 = X1^p^2
fp2mul1271(P->x, t2, P->x); // X = X1^p*Z1^p^2
fp2mul1271(t2, (felm_t*)&cpsi2, P->z); // Z = cpsi2*Z1^p^2
fp2mul1271(t2, (felm_t*)&cpsi3, t1); // t1 = cpsi3*Z1^p^2
fp2mul1271(t2, (felm_t*)&cpsi4, t2); // t2 = cpsi4*Z1^p^2
fp2add1271(t0, P->z, P->z); // Z = X1^p^2 + cpsi2*Z1^p^2
fp2add1271(t0, t2, t2); // t2 = X1^p^2 + cpsi4*Z1^p^2
fp2add1271(t0, t1, t1); // t1 = X1^p^2 + cpsi3*Z1^p^2
fp2neg1271(t2); // t2 = -(X1^p^2 + cpsi4*Z1^p^2)
fp2mul1271(P->z, P->y, P->z); // Z = Y1^p*(X1^p^2 + cpsi2*Z1^p^2)
fp2mul1271(P->x, t2, P->x); // X = -X1^p*Z1^p^2*(X1^p^2 + cpsi4*Z1^p^2)
fp2mul1271(t1, P->z, P->y); // Yfinal = t1*Z
fp2mul1271(P->x, (felm_t*)&cpsi1, P->x); // Xfinal = cpsi1*X
fp2mul1271(P->z, t2, P->z); // Zfinal = Z*t2
}
void ecc_psi(point_extproj_t P)
{ // Apply psi mapping to a point, P = psi(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal) on E, where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
ecc_tau(P);
ecc_delpsidel(P);
ecc_tau_dual(P);
}
void ecc_phi(point_extproj_t P)
{ // Apply phi mapping to a point, P = phi(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal) on E, where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
ecc_tau(P);
ecc_delphidel(P);
ecc_tau_dual(P);
}
static __inline void mul_truncate(uint64_t* s, uint64_t* C, uint64_t* out)
{ // 256-bit multiplication with truncation for the scalar decomposition
// Outputs 64-bit value "out" = (uint64_t)((s * C) >> 256).
uint128_t tt1, tt2;
unsigned int carry1;
#if defined(GENERIC_IMPLEMENTATION) || defined(SCALAR_INTRIN_SUPPORT)
unsigned int carry2;
uint64_t temp;
MUL128(s[0], C[0], tt2);
tt2[0] = tt2[1];
tt2[1] = 0;
MUL128(s[1], C[0], tt1);
ADD128(tt1, tt2, tt1);
MUL128(s[0], C[1], tt2);
ADC128(tt1, tt2, carry1, tt1);
tt1[0] = tt1[1];
tt1[1] = (uint64_t)(carry1);
MUL128(s[2], C[0], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[0], C[2], tt2);
ADC128(tt1, tt2, carry1, tt1);
MUL128(s[1], C[1], tt2);
ADC128(tt1, tt2, carry2, tt1);
tt1[0] = tt1[1];
tt1[1] = (uint64_t)carry1 + (uint64_t)carry2;
MUL128(s[0], C[3], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[3], C[0], tt2);
ADC128(tt1, tt2, carry1, tt1);
MUL128(s[1], C[2], tt2);
ADC128(tt1, tt2, carry2, tt1);
temp = (uint64_t)carry1 + (uint64_t)carry2;
MUL128(s[2], C[1], tt2);
ADC128(tt1, tt2, carry2, tt1);
tt1[0] = tt1[1];
tt1[1] = temp + (uint64_t)carry2;
MUL128(s[1], C[3], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[3], C[1], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[2], C[2], tt2);
ADD128(tt1, tt2, tt1);
*out = tt1[0];
#ifdef TEMP_ZEROING
clear_words((void*)tt1, sizeof(uint128_t)/sizeof(unsigned int));
clear_words((void*)tt2, sizeof(uint128_t)/sizeof(unsigned int));
clear_words((void*)&temp, sizeof(uint64_t)/sizeof(unsigned int));
#endif
#elif defined(UINT128_SUPPORT)
uint128_t tt3, tt4;
tt2 = (uint128_t)s[0]*C[0];
tt1 = (uint128_t)s[1]*C[0] + (uint64_t)(tt2 >> 64);
tt2 = (uint128_t)s[0]*C[1];
carry1 = (unsigned int)(((uint128_t)((uint64_t)tt1) + (uint128_t)((uint64_t)tt2)) >> 64);
tt1 = (uint128_t)(tt1 >> 64) + (uint128_t)(tt2 >> 64) + (uint64_t)carry1;
tt1 += (uint128_t)s[2]*C[0];
tt2 = (uint128_t)s[0]*C[2];
tt3 = (uint128_t)s[1]*C[1];
carry1 = (unsigned int)(((uint128_t)((uint64_t)tt1) + (uint128_t)((uint64_t)tt2) + (uint128_t)((uint64_t)tt3)) >> 64);
tt1 = (uint128_t)(tt1 >> 64) + (uint128_t)(tt2 >> 64) + (uint128_t)(tt3 >> 64) + (uint64_t)carry1;
tt1 += (uint128_t)s[0]*C[3];
tt2 = (uint128_t)s[3]*C[0];
tt3 = (uint128_t)s[1]*C[2];
tt4 = (uint128_t)s[2]*C[1];
carry1 = (unsigned int)(((uint128_t)((uint64_t)tt1) + (uint128_t)((uint64_t)tt2) + (uint128_t)((uint64_t)tt3) + (uint128_t)((uint64_t)tt4)) >> 64);
tt1 = (uint128_t)(tt1 >> 64) + (uint128_t)(tt2 >> 64) + (uint128_t)(tt3 >> 64) + (uint128_t)(tt4 >> 64) + (uint64_t)carry1;
tt1 += (uint128_t)s[1]*C[3] + (uint128_t)s[3]*C[1] + (uint128_t)s[2]*C[2];
*out = (uint64_t)tt1;
#ifdef TEMP_ZEROING
clear_words((void*)&tt1, sizeof(uint128_t)/sizeof(unsigned int));
clear_words((void*)&tt2, sizeof(uint128_t)/sizeof(unsigned int));
clear_words((void*)&tt3, sizeof(uint128_t)/sizeof(unsigned int));
clear_words((void*)&tt4, sizeof(uint128_t)/sizeof(unsigned int));
#endif
#endif
}
void decompose(uint64_t* k, uint64_t* scalars)
{ // Scalar decomposition for the variable-base scalar multiplication
// Input: scalar in the range [0, 2^256-1].
// Output: 4 64-bit sub-scalars.
uint64_t a1, a2, a3, a4, temp, mask;
#if (TARGET == TARGET_x86) && (COMPILER == COMPILER_VC)
uint128_t t1, t2, t3, t4;
mul_truncate(k, ell1, &a1);
mul_truncate(k, ell2, &a2);
mul_truncate(k, ell3, &a3);
mul_truncate(k, ell4, &a4);
MUL128(a1, b11, t1); MUL128(a2, b21, t2); MUL128(a3, b31, t3); MUL128(a4, b41, t4);
temp = k[0] - t1[0] - t2[0] - t3[0] - t4[0] + c1;
mask = ~(0 - (temp & 1)); // If temp is even then mask = 0xFF...FF, else mask = 0
scalars[0] = temp + (mask & b41);
MUL128(a1, b12, t1); MUL128(a3, b32, t2); MUL128(a4, b42, t3);
scalars[1] = t1[0] + (uint64_t)a2 - t2[0] - t3[0] + c2 + (mask & b42);
MUL128(a3, b33, t1); MUL128(a1, b13, t2); MUL128(a4, b43, t3);
scalars[2] = t1[0] - t2[0] - (uint64_t)a2 + t3[0] + c3 - (mask & b43);
MUL128(a1, b14, t1); MUL128(a2, b24, t2); MUL128(a3, b34, t3); MUL128(a4, b44, t4);
scalars[3] = t1[0] - t2[0] - t3[0] + t4[0] + c4 - (mask & b44);
#else
mul_truncate(k, ell1, &a1);
mul_truncate(k, ell2, &a2);
mul_truncate(k, ell3, &a3);
mul_truncate(k, ell4, &a4);
temp = k[0] - (uint64_t)a1*b11 - (uint64_t)a2*b21 - (uint64_t)a3*b31 - (uint64_t)a4*b41 + c1;
mask = ~(0 - (temp & 1)); // If temp is even then mask = 0xFF...FF, else mask = 0
scalars[0] = temp + (mask & b41);
scalars[1] = (uint64_t)a1*b12 + (uint64_t)a2 - (uint64_t)a3*b32 - (uint64_t)a4*b42 + c2 + (mask & b42);
scalars[2] = (uint64_t)a3*b33 - (uint64_t)a1*b13 - (uint64_t)a2 + (uint64_t)a4*b43 + c3 - (mask & b43);
scalars[3] = (uint64_t)a1*b14 - (uint64_t)a2*b24 - (uint64_t)a3*b34 + (uint64_t)a4*b44 + c4 - (mask & b44);
#endif
#ifdef TEMP_ZEROING
clear_words((void*)&a1, sizeof(uint64_t)/sizeof(unsigned int));
clear_words((void*)&a2, sizeof(uint64_t)/sizeof(unsigned int));
clear_words((void*)&a3, sizeof(uint64_t)/sizeof(unsigned int));
clear_words((void*)&a4, sizeof(uint64_t)/sizeof(unsigned int));
clear_words((void*)&temp, sizeof(uint64_t)/sizeof(unsigned int));
clear_words((void*)&mask, sizeof(uint64_t)/sizeof(unsigned int));
#endif
}
void ecc_precomp(point_extproj_t P, point_extproj_precomp_t *T)
{ // Generation of the precomputation table used by the variable-base scalar multiplication ecc_mul().
// Input: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Output: table T containing 8 points: P, P+phi(P), P+psi(P), P+phi(P)+psi(P), P+psi(phi(P)), P+phi(P)+psi(phi(P)), P+psi(P)+psi(phi(P)), P+phi(P)+psi(P)+psi(phi(P))
// Precomputed points use the representation (X+Y,Y-X,2Z,2dT) corresponding to (X:Y:Z:T) in extended twisted Edwards coordinates
point_extproj_precomp_t Q, R, S;
point_extproj_t PP;
// Generating Q = phi(P) = (XQ+YQ,YQ-XQ,ZQ,TQ)
ecccopy(P, PP);
ecc_phi(PP);
R1_to_R3(PP, Q); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,Z,T)
// Generating S = psi(Q) = (XS+YS,YS-XS,ZS,TS)
ecc_psi(PP);
R1_to_R3(PP, S); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,Z,T)
// Generating T[0] = P = (XP+YP,YP-XP,2ZP,2dTP)
R1_to_R2(P, T[0]); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,2Z,2dT)
// Generating R = psi(P) = (XR+YR,YR-XR,ZR,TR)
ecc_psi(P);
R1_to_R3(P, R); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,Z,T)
eccadd_core(T[0], Q, PP); // T[1] = P+Q using the representations (X,Y,Z,Ta,Tb) <- (X+Y,Y-X,2Z,2dT) + (X+Y,Y-X,Z,T)
R1_to_R2(PP, T[1]); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,2Z,2dT)
eccadd_core(T[0], R, PP); // T[2] = P+R
R1_to_R2(PP, T[2]);
eccadd_core(T[1], R, PP); // T[3] = P+Q+R
R1_to_R2(PP, T[3]);
eccadd_core(T[0], S, PP); // T[4] = P+S
R1_to_R2(PP, T[4]);
eccadd_core(T[1], S, PP); // T[5] = P+Q+S
R1_to_R2(PP, T[5]);
eccadd_core(T[2], S, PP); // T[6] = P+R+S
R1_to_R2(PP, T[6]);
eccadd_core(T[3], S, PP); // T[7] = P+Q+R+S
R1_to_R2(PP, T[7]);
}
void recode(uint64_t* scalars, unsigned int* digits, unsigned int* sign_masks)
{ // Recoding sub-scalars for use in the variable-base scalar multiplication. See Algorithm 1 in "Efficient and Secure Methods for GLV-Based Scalar
// Multiplication and their Implementation on GLV-GLS Curves (Extended Version)", A. Faz-Hernandez, P. Longa, and A.H. Sanchez, in Journal
// of Cryptographic Engineering, Vol. 5(1), 2015.
// Input: 4 64-bit sub-scalars passed through "scalars", which are obtained after calling decompose().
// Outputs: "digits" array with 65 nonzero entries. Each entry is in the range [0, 7], corresponding to one entry in the precomputed table.
// "sign_masks" array with 65 entries storing the signs for their corresponding digits in "digits".
// Notation: if the corresponding digit > 0 then sign_mask = 0xFF...FF, else if digit < 0 then sign_mask = 0.
unsigned int i, bit, bit0, carry;
sign_masks[64] = (unsigned int)-1;
for (i = 0; i < 64; i++)
{
scalars[0] >>= 1;
bit0 = (unsigned int)scalars[0] & 1;
sign_masks[i] = 0 - bit0;
bit = (unsigned int)scalars[1] & 1;
carry = (bit0 | bit) ^ bit0;
scalars[1] = (scalars[1] >> 1) + (uint64_t)carry;
digits[i] = bit;
bit = (unsigned int)scalars[2] & 1;
carry = (bit0 | bit) ^ bit0;
scalars[2] = (scalars[2] >> 1) + (uint64_t)carry;
digits[i] += (bit << 1);
bit = (unsigned int)scalars[3] & 1;
carry = (bit0 | bit) ^ bit0;
scalars[3] = (scalars[3] >> 1) + (uint64_t)carry;
digits[i] += (bit << 2);
}
digits[64] = (unsigned int)(scalars[1] + (scalars[2] << 1) + (scalars[3] << 2));
}
bool ecc_mul(point_t P, digit_t* k, point_t Q, bool clear_cofactor)
{ // Variable-base scalar multiplication Q = k*P using a 4-dimensional decomposition
// Inputs: scalar "k" in [0, 2^256-1],
// point P = (x,y) in affine coordinates,
// clear_cofactor = 1 (TRUE) or 0 (FALSE) whether cofactor clearing is required or not, respectively.
// Output: Q = k*P in affine coordinates (x,y).
// This function performs point validation and (if selected) cofactor clearing.
point_extproj_t R;
point_extproj_precomp_t S, Table[8];
uint64_t scalars[NWORDS64_ORDER];
unsigned int digits[65], sign_masks[65];
int i;
point_setup(P, R); // Convert to representation (X,Y,1,Ta,Tb)
decompose((uint64_t*)k, scalars); // Scalar decomposition
if (ecc_point_validate(R) == false) { // Check if point lies on the curve
return false;
}
if (clear_cofactor == true) {
cofactor_clearing(R);
}
recode(scalars, digits, sign_masks); // Scalar recoding
ecc_precomp(R, Table); // Precomputation
table_lookup_1x8(Table, S, digits[64], sign_masks[64]); // Extract initial point in (X+Y,Y-X,2Z,2dT) representation
R2_to_R4(S, R); // Conversion to representation (2X,2Y,2Z)
for (i = 63; i >= 0; i--)
{
table_lookup_1x8(Table, S, digits[i], sign_masks[i]); // Extract point S in (X+Y,Y-X,2Z,2dT) representation
eccdouble(R); // P = 2*P using representations (X,Y,Z,Ta,Tb) <- 2*(X,Y,Z)
eccadd(S, R); // P = P+S using representations (X,Y,Z,Ta,Tb) <- (X,Y,Z,Ta,Tb) + (X+Y,Y-X,2Z,2dT)
}
eccnorm(R, Q); // Conversion to affine coordinates (x,y) and modular correction.
#ifdef TEMP_ZEROING
clear_words((void*)digits, 65);
clear_words((void*)sign_masks, 65);
clear_words((void*)S, sizeof(point_extproj_precomp_t)/sizeof(unsigned int));
#endif
return true;
}
void cofactor_clearing(point_extproj_t P)
{ // Co-factor clearing
// Input: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Output: P = 392*P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal), where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
point_extproj_precomp_t Q;
R1_to_R2(P, Q); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,2Z,2dT)
eccdouble(P); // P = 2*P using representations (X,Y,Z,Ta,Tb) <- 2*(X,Y,Z)
eccadd(Q, P); // P = P+Q using representations (X,Y,Z,Ta,Tb) <- (X,Y,Z,Ta,Tb) + (X+Y,Y-X,2Z,2dT)
eccdouble(P);
eccdouble(P);
eccdouble(P);
eccdouble(P);
eccadd(Q, P);
eccdouble(P);
eccdouble(P);
eccdouble(P);
}
#endif