-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheccp2_core.c
727 lines (609 loc) · 31.9 KB
/
eccp2_core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/***********************************************************************************
* FourQlib: a high-performance crypto library based on the elliptic curve FourQ
*
* Copyright (c) Microsoft Corporation. All rights reserved.
*
* Abstract: core GF(p^2) and ECC operations over GF(p^2)
*
* This code is based on the paper "FourQ: four-dimensional decompositions on a
* Q-curve over the Mersenne prime" by Craig Costello and Patrick Longa, in Advances
* in Cryptology - ASIACRYPT, 2015.
* Preprint available at http://eprint.iacr.org/2015/565.
************************************************************************************/
#include "FourQ_internal.h"
#include "FourQ_params.h"
#include "FourQ_tables.h"
#if defined(GENERIC_IMPLEMENTATION)
#include "generic/fp.h"
#elif (TARGET == TARGET_AMD64)
#include "AMD64/fp_x64.h"
#elif (TARGET == TARGET_ARM64)
#include "ARM64/fp_arm64.h"
#endif
/***********************************************/
/************* GF(p^2) FUNCTIONS ***************/
void fp2copy1271(f2elm_t a, f2elm_t c)
{// Copy of a GF(p^2) element, c = a
fpcopy1271(a[0], c[0]);
fpcopy1271(a[1], c[1]);
}
void fp2zero1271(f2elm_t a)
{// Zeroing a GF(p^2) element, a = 0
fpzero1271(a[0]);
fpzero1271(a[1]);
}
void fp2neg1271(f2elm_t a)
{// GF(p^2) negation, a = -a in GF((2^127-1)^2)
fpneg1271(a[0]);
fpneg1271(a[1]);
}
void fp2sqr1271(f2elm_t a, f2elm_t c)
{// GF(p^2) squaring, c = a^2 in GF((2^127-1)^2)
#ifdef ASM_SUPPORT
fp2sqr1271_a(a, c);
#else
felm_t t1, t2, t3;
fpadd1271(a[0], a[1], t1); // t1 = a0+a1
fpsub1271(a[0], a[1], t2); // t2 = a0-a1
fpmul1271(a[0], a[1], t3); // t3 = a0*a1
fpmul1271(t1, t2, c[0]); // c0 = (a0+a1)(a0-a1)
fpadd1271(t3, t3, c[1]); // c1 = 2a0*a1
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(felm_t)/sizeof(unsigned int));
clear_words((void*)t2, sizeof(felm_t)/sizeof(unsigned int));
clear_words((void*)t3, sizeof(felm_t)/sizeof(unsigned int));
#endif
#endif
}
void fp2mul1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) multiplication, c = a*b in GF((2^127-1)^2)
#if defined(ASM_SUPPORT)
fp2mul1271_a(a, b, c);
#else
felm_t t1, t2, t3, t4;
fpmul1271(a[0], b[0], t1); // t1 = a0*b0
fpmul1271(a[1], b[1], t2); // t2 = a1*b1
fpadd1271(a[0], a[1], t3); // t3 = a0+a1
fpadd1271(b[0], b[1], t4); // t4 = b0+b1
fpsub1271(t1, t2, c[0]); // c[0] = a0*b0 - a1*b1
fpmul1271(t3, t4, t3); // t3 = (a0+a1)*(b0+b1)
fpsub1271(t3, t1, t3); // t3 = (a0+a1)*(b0+b1) - a0*b0
fpsub1271(t3, t2, c[1]); // c[1] = (a0+a1)*(b0+b1) - a0*b0 - a1*b1
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(felm_t)/sizeof(unsigned int));
clear_words((void*)t2, sizeof(felm_t)/sizeof(unsigned int));
clear_words((void*)t3, sizeof(felm_t)/sizeof(unsigned int));
clear_words((void*)t4, sizeof(felm_t)/sizeof(unsigned int));
#endif
#endif
}
__inline void fp2add1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) addition, c = a+b in GF((2^127-1)^2)
fpadd1271(a[0], b[0], c[0]);
fpadd1271(a[1], b[1], c[1]);
}
__inline void fp2sub1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) subtraction, c = a-b in GF((2^127-1)^2)
fpsub1271(a[0], b[0], c[0]);
fpsub1271(a[1], b[1], c[1]);
}
static __inline void fp2addsub1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) addition followed by subtraction, c = 2a-b in GF((2^127-1)^2)
#ifdef ASM_SUPPORT
fp2addsub1271_a(a, b, c);
#else
fp2add1271(a, a, a);
fp2sub1271(a, b, c);
#endif
}
void fp2inv1271(f2elm_t a)
{// GF(p^2) inversion, a = (a0-i*a1)/(a0^2+a1^2)
f2elm_t t1;
fpsqr1271(a[0], t1[0]); // t10 = a0^2
fpsqr1271(a[1], t1[1]); // t11 = a1^2
fpadd1271(t1[0], t1[1], t1[0]); // t10 = a0^2+a1^2
fpinv1271(t1[0]); // t10 = (a0^2+a1^2)^-1
fpneg1271(a[1]); // a = a0-i*a1
fpmul1271(a[0], t1[0], a[0]);
fpmul1271(a[1], t1[0], a[1]); // a = (a0-i*a1)*(a0^2+a1^2)^-1
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(f2elm_t)/sizeof(unsigned int));
#endif
}
void clear_words(void* mem, unsigned int nwords)
{ // Clear integer-size digits from memory. "nwords" indicates the number of integer digits to be zeroed.
// This function uses the volatile type qualifier to inform the compiler not to optimize out the memory clearing.
// It has been tested with MSVS 2013 and GNU GCC 4.6.3, 4.7.3, 4.8.2 and 4.8.4. Users are responsible for verifying correctness with different compilers.
// See "Compliant Solution (C99)" at https://www.securecoding.cert.org/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations
unsigned int i;
volatile unsigned int *v = mem;
for (i = 0; i < nwords; i++)
v[i] = 0;
}
/***********************************************/
/********** CURVE/SCALAR FUNCTIONS ***********/
void eccset(point_t P)
{ // Set generator
// Output: P = (x,y)
fp2copy1271((felm_t*)&GENERATOR_x, P->x); // X1
fp2copy1271((felm_t*)&GENERATOR_y, P->y); // Y1
}
void eccnorm(point_extproj_t P, point_t Q)
{ // Normalize a projective point (X1:Y1:Z1), including full reduction
// Input: P = (X1:Y1:Z1) in twisted Edwards coordinates
// Output: Q = (X1/Z1,Y1/Z1), corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
fp2inv1271(P->z); // Z1 = Z1^-1
fp2mul1271(P->x, P->z, Q->x); // X1 = X1/Z1
fp2mul1271(P->y, P->z, Q->y); // Y1 = Y1/Z1
mod1271(Q->x[0]); mod1271(Q->x[1]);
mod1271(Q->y[0]); mod1271(Q->y[1]);
}
__inline void R1_to_R2(point_extproj_t P, point_extproj_precomp_t Q)
{ // Conversion from representation (X,Y,Z,Ta,Tb) to (X+Y,Y-X,2Z,2dT), where T = Ta*Tb
// Input: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Output: Q = (X1+Y1,Y1-X1,2Z1,2dT1) corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
fp2add1271(P->ta, P->ta, Q->t2); // T = 2*Ta
fp2add1271(P->x, P->y, Q->xy); // QX = X+Y
fp2sub1271(P->y, P->x, Q->yx); // QY = Y-X
fp2mul1271(Q->t2, P->tb, Q->t2); // T = 2*T
fp2add1271(P->z, P->z, Q->z2); // QZ = 2*Z
fp2mul1271(Q->t2, (felm_t*)&PARAMETER_d, Q->t2); // QT = 2d*T
}
__inline void R1_to_R3(point_extproj_t P, point_extproj_precomp_t Q)
{ // Conversion from representation (X,Y,Z,Ta,Tb) to (X+Y,Y-X,Z,T), where T = Ta*Tb
// Input: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Output: Q = (X1+Y1,Y1-X1,Z1,T1) corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
fp2add1271(P->x, P->y, Q->xy); // XQ = (X1+Y1)
fp2sub1271(P->y, P->x, Q->yx); // YQ = (Y1-X1)
fp2mul1271(P->ta, P->tb, Q->t2); // TQ = T1
fp2copy1271(P->z, Q->z2); // ZQ = Z1
}
void R2_to_R4(point_extproj_precomp_t P, point_extproj_t Q)
{ // Conversion from representation (X+Y,Y-X,2Z,2dT) to (2X,2Y,2Z,2dT)
// Input: P = (X1+Y1,Y1-X1,2Z1,2dT1) corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Output: Q = (2X1,2Y1,2Z1) corresponding to (X1:Y1:Z1) in twisted Edwards coordinates
fp2sub1271(P->xy, P->yx, Q->x); // XQ = 2*X1
fp2add1271(P->xy, P->yx, Q->y); // YQ = 2*Y1
fp2copy1271(P->z2, Q->z); // ZQ = 2*Z1
}
__inline void eccdouble(point_extproj_t P)
{ // Point doubling 2P
// Input: P = (X1:Y1:Z1) in twisted Edwards coordinates
// Output: 2P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal), where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
f2elm_t t1, t2;
fp2sqr1271(P->x, t1); // t1 = X1^2
fp2sqr1271(P->y, t2); // t2 = Y1^2
fp2add1271(P->x, P->y, P->x); // t3 = X1+Y1
fp2add1271(t1, t2, P->tb); // Tbfinal = X1^2+Y1^2
fp2sub1271(t2, t1, t1); // t1 = Y1^2-X1^2
fp2sqr1271(P->x, P->ta); // Ta = (X1+Y1)^2
fp2sqr1271(P->z, t2); // t2 = Z1^2
fp2sub1271(P->ta, P->tb, P->ta); // Tafinal = 2X1*Y1 = (X1+Y1)^2-(X1^2+Y1^2)
fp2addsub1271(t2, t1, t2); // t2 = 2Z1^2-(Y1^2-X1^2)
fp2mul1271(t1, P->tb, P->y); // Yfinal = (X1^2+Y1^2)(Y1^2-X1^2)
fp2mul1271(t2, P->ta, P->x); // Xfinal = 2X1*Y1*[2Z1^2-(Y1^2-X1^2)]
fp2mul1271(t1, t2, P->z); // Zfinal = (Y1^2-X1^2)[2Z1^2-(Y1^2-X1^2)]
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(f2elm_t)/sizeof(unsigned int));
clear_words((void*)t2, sizeof(f2elm_t)/sizeof(unsigned int));
#endif
}
__inline void eccadd_core(point_extproj_precomp_t P, point_extproj_precomp_t Q, point_extproj_t R)
{ // Basic point addition R = P+Q or R = P+P
// Inputs: P = (X1+Y1,Y1-X1,2Z1,2dT1) corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Q = (X2+Y2,Y2-X2,Z2,T2) corresponding to (X2:Y2:Z2:T2) in extended twisted Edwards coordinates
// Output: R = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal), where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
f2elm_t t1, t2;
fp2mul1271(P->t2, Q->t2, R->z); // Z = 2dT1*T2
fp2mul1271(P->z2, Q->z2, t1); // t1 = 2Z1*Z2
fp2mul1271(P->xy, Q->xy, R->x); // X = (X1+Y1)(X2+Y2)
fp2mul1271(P->yx, Q->yx, R->y); // Y = (Y1-X1)(Y2-X2)
fp2sub1271(t1, R->z, t2); // t2 = theta
fp2add1271(t1, R->z, t1); // t1 = alpha
fp2sub1271(R->x, R->y, R->tb); // Tbfinal = beta
fp2add1271(R->x, R->y, R->ta); // Tafinal = omega
fp2mul1271(R->tb, t2, R->x); // Xfinal = beta*theta
fp2mul1271(t1, t2, R->z); // Zfinal = theta*alpha
fp2mul1271(R->ta, t1, R->y); // Yfinal = alpha*omega
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(f2elm_t)/sizeof(unsigned int));
clear_words((void*)t2, sizeof(f2elm_t)/sizeof(unsigned int));
#endif
}
__inline void eccadd(point_extproj_precomp_t Q, point_extproj_t P)
{ // Complete point addition P = P+Q or P = P+P
// Inputs: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Q = (X2+Y2,Y2-X2,2Z2,2dT2) corresponding to (X2:Y2:Z2:T2) in extended twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal), where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
point_extproj_precomp_t R;
R1_to_R3(P, R); // R = (X1+Y1,Y1-Z1,Z1,T1)
eccadd_core(Q, R, P); // P = (X2+Y2,Y2-X2,2Z2,2dT2) + (X1+Y1,Y1-Z1,Z1,T1)
#ifdef TEMP_ZEROING
clear_words((void*)R, sizeof(point_extproj_precomp_t)/sizeof(unsigned int));
#endif
}
__inline void point_setup(point_t P, point_extproj_t Q)
{ // Point conversion to representation (X,Y,Z,Ta,Tb)
// Input: P = (x,y) in affine coordinates
// Output: P = (X,Y,1,Ta,Tb), where Ta=X, Tb=Y and T=Ta*Tb, corresponding to (X:Y:Z:T) in extended twisted Edwards coordinates
fp2copy1271(P->x, Q->x);
fp2copy1271(P->y, Q->y);
fp2copy1271(Q->x, Q->ta); // Ta = X1
fp2copy1271(Q->y, Q->tb); // Tb = Y1
fp2zero1271(Q->z); Q->z[0][0]=1; // Z1 = 1
}
__inline bool ecc_point_validate(point_extproj_t P)
{ // Point validation: check if point lies on the curve
// Input: P = (x,y) in affine coordinates, where x, y in [0, 2^127-1].
// Output: TRUE (1) if point lies on the curve E: -x^2+y^2-1-dx^2*y^2 = 0, FALSE (0) otherwise.
// SECURITY NOTE: this function does not run in constant time (input point P is assumed to be public).
f2elm_t t1, t2, t3;
fp2sqr1271(P->y, t1);
fp2sqr1271(P->x, t2);
fp2sub1271(t1, t2, t3); // -x^2 + y^2
fp2mul1271(t1, t2, t1); // x^2*y^2
fp2mul1271((felm_t*)&PARAMETER_d, t1, t2); // dx^2*y^2
fp2zero1271(t1); t1[0][0] = 1; // t1 = 1
fp2add1271(t2, t1, t2); // 1 + dx^2*y^2
fp2sub1271(t3, t2, t1); // -x^2 + y^2 - 1 - dx^2*y^2
#if defined(GENERIC_IMPLEMENTATION)
{ unsigned int i, j;
mod1271(t1[0]);
mod1271(t1[1]);
for (i = 0; i < 2; i++) {
for (j = 0; j < NWORDS_FIELD; j++) {
if (t1[i][j] != 0) return false;
}
}
return true; }
#else
return ((is_digit_zero_ct(t1[0][0] | t1[0][1]) || is_digit_zero_ct((t1[0][0]+1) | (t1[0][1]+1))) &
(is_digit_zero_ct(t1[1][0] | t1[1][1]) || is_digit_zero_ct((t1[1][0]+1) | (t1[1][1]+1))));
#endif
}
static __inline void R5_to_R1(point_precomp_t P, point_extproj_t Q)
{ // Conversion from representation (x+y,y-x,2dt) to (X,Y,Z,Ta,Tb)
// Input: P = (x1+y1,y1-x1,2dt1) corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates, where Z1=1
// Output: Q = (x1,y1,z1,x1,y1), where z1=1, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
fp2sub1271(P->xy, P->yx, Q->x); // 2*x1
fp2add1271(P->xy, P->yx, Q->y); // 2*y1
fp2div1271(Q->x); // XQ = x1
fp2div1271(Q->y); // YQ = y1
fp2zero1271(Q->z); Q->z[0][0]=1; // ZQ = 1
fp2copy1271(Q->x, Q->ta); // TaQ = x1
fp2copy1271(Q->y, Q->tb); // TbQ = y1
}
static __inline void eccmadd(point_precomp_t Q, point_extproj_t P)
{ // Mixed point addition P = P+Q or P = P+P
// Inputs: P = (X1,Y1,Z1,Ta,Tb), where T1 = Ta*Tb, corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
// Q = (x2+y2,y2-x2,2dt2) corresponding to (X2:Y2:Z2:T2) in extended twisted Edwards coordinates, where Z2=1
// Output: P = (Xfinal,Yfinal,Zfinal,Tafinal,Tbfinal), where Tfinal = Tafinal*Tbfinal,
// corresponding to (Xfinal:Yfinal:Zfinal:Tfinal) in extended twisted Edwards coordinates
f2elm_t t1, t2;
fp2mul1271(P->ta, P->tb, P->ta); // Ta = T1
fp2add1271(P->z, P->z, t1); // t1 = 2Z1
fp2mul1271(P->ta, Q->t2, P->ta); // Ta = 2dT1*t2
fp2add1271(P->x, P->y, P->z); // Z = (X1+Y1)
fp2sub1271(P->y, P->x, P->tb); // Tb = (Y1-X1)
fp2sub1271(t1, P->ta, t2); // t2 = theta
fp2add1271(t1, P->ta, t1); // t1 = alpha
fp2mul1271(Q->xy, P->z, P->ta); // Ta = (X1+Y1)(x2+y2)
fp2mul1271(Q->yx, P->tb, P->x); // X = (Y1-X1)(y2-x2)
fp2mul1271(t1, t2, P->z); // Zfinal = theta*alpha
fp2sub1271(P->ta, P->x, P->tb); // Tbfinal = beta
fp2add1271(P->ta, P->x, P->ta); // Tafinal = omega
fp2mul1271(P->tb, t2, P->x); // Xfinal = beta*theta
fp2mul1271(P->ta, t1, P->y); // Yfinal = alpha*omega
#ifdef TEMP_ZEROING
clear_words((void*)t1, sizeof(f2elm_t)/sizeof(unsigned int));
clear_words((void*)t2, sizeof(f2elm_t)/sizeof(unsigned int));
#endif
}
void eccmadd_ni(point_precomp_t Q, point_extproj_t P)
{
eccmadd(Q, P);
}
bool ecc_mul_fixed(digit_t* k, point_t Q)
{ // Fixed-base scalar multiplication Q = k*G, where G is the generator. FIXED_BASE_TABLE stores v*2^(w-1) = 80 multiples of G.
// Inputs: scalar "k" in [0, 2^256-1].
// Output: Q = k*G in affine coordinates (x,y).
// The function is based on the modified LSB-set comb method, which converts the scalar to an odd signed representation
// with (bitlength(order)+w*v) digits.
unsigned int j, w = W_FIXEDBASE, v = V_FIXEDBASE, d = D_FIXEDBASE, e = E_FIXEDBASE;
unsigned int digit = 0, digits[NBITS_ORDER_PLUS_ONE+(W_FIXEDBASE*V_FIXEDBASE)-1] = {0};
digit_t temp[NWORDS_ORDER];
point_extproj_t R;
point_precomp_t S;
int i, ii;
modulo_order(k, temp); // temp = k mod (order)
conversion_to_odd(temp, temp); // Converting scalar to odd using the prime subgroup order
mLSB_set_recode((uint64_t*)temp, digits); // Scalar recoding
// Extracting initial digit
digit = digits[w*d-1];
for (i = (int)((w-1)*d-1); i >= (int)(2*d-1); i = i-d)
{
digit = 2*digit + digits[i];
}
// Initialize R = (x+y,y-x,2dt) with a point from the table
table_lookup_fixed_base(((point_precomp_t*)&FIXED_BASE_TABLE)+(v-1)*(1 << (w-1)), S, digit, digits[d-1]);
R5_to_R1(S, R); // Converting to representation (X:Y:1:Ta:Tb)
for (j = 0; j < (v-1); j++)
{
digit = digits[w*d-(j+1)*e-1];
for (i = (int)((w-1)*d-(j+1)*e-1); i >= (int)(2*d-(j+1)*e-1); i = i-d)
{
digit = 2*digit + digits[i];
}
// Extract point in (x+y,y-x,2dt) representation
table_lookup_fixed_base(((point_precomp_t*)&FIXED_BASE_TABLE)+(v-j-2)*(1 << (w-1)), S, digit, digits[d-(j+1)*e-1]);
eccmadd(S, R); // R = R+S using representations (X,Y,Z,Ta,Tb) <- (X,Y,Z,Ta,Tb) + (x+y,y-x,2dt)
}
for (ii = (e-2); ii >= 0; ii--)
{
eccdouble(R); // R = 2*R using representations (X,Y,Z,Ta,Tb) <- 2*(X,Y,Z)
for (j = 0; j < v; j++)
{
digit = digits[w*d-j*e+ii-e];
for (i = (int)((w-1)*d-j*e+ii-e); i >= (int)(2*d-j*e+ii-e); i = i-d)
{
digit = 2*digit + digits[i];
}
// Extract point in (x+y,y-x,2dt) representation
table_lookup_fixed_base(((point_precomp_t*)&FIXED_BASE_TABLE)+(v-j-1)*(1 << (w-1)), S, digit, digits[d-j*e+ii-e]);
eccmadd(S, R); // R = R+S using representations (X,Y,Z,Ta,Tb) <- (X,Y,Z,Ta,Tb) + (x+y,y-x,2dt)
}
}
eccnorm(R, Q); // Conversion to affine coordinates (x,y) and modular correction.
#ifdef TEMP_ZEROING
clear_words((void*)digits, NBITS_ORDER_PLUS_ONE+(W_FIXEDBASE*V_FIXEDBASE)-1);
clear_words((void*)S, sizeof(point_precomp_t)/sizeof(unsigned int));
#endif
return true;
}
void mLSB_set_recode(uint64_t* scalar, unsigned int *digits)
{ // Computes the modified LSB-set representation of a scalar
// Inputs: scalar in [0, order-1], where the order of FourQ's subgroup is 246 bits.
// Output: digits, where the first "d" values (from index 0 to (d-1)) store the signs for the recoded values using the convention: -1 (negative), 0 (positive), and
// the remaining values (from index d to (l-1)) store the recoded values in mLSB-set representation, excluding their sign,
// where l = d*w and d = ceil(bitlength(order)/(w*v))*v. The values v and w are fixed and must be in the range [1, 10] (see FourQ.h); they determine the size
// of the precomputed table "FIXED_BASE_TABLE" used by ecc_mul_fixed().
unsigned int i, j, d = D_FIXEDBASE, l = L_FIXEDBASE;
uint64_t temp, carry;
digits[d-1] = 0;
// Shift scalar to the right by 1
for (j = 0; j < (NWORDS64_ORDER-1); j++) {
SHIFTR(scalar[j+1], scalar[j], 1, scalar[j], RADIX64);
}
scalar[NWORDS64_ORDER-1] >>= 1;
for (i = 0; i < (d-1); i++)
{
digits[i] = (unsigned int)((scalar[0] & 1) - 1); // Convention for the "sign" row:
// if scalar_(i+1) = 0 then digit_i = -1 (negative), else if scalar_(i+1) = 1 then digit_i = 0 (positive)
// Shift scalar to the right by 1
for (j = 0; j < (NWORDS64_ORDER-1); j++) {
SHIFTR(scalar[j+1], scalar[j], 1, scalar[j], RADIX64);
}
scalar[NWORDS64_ORDER-1] >>= 1;
}
for (i = d; i < l; i++)
{
digits[i] = (unsigned int)(scalar[0] & 1); // digits_i = k mod 2. Sign is determined by the "sign" row
// Shift scalar to the right by 1
for (j = 0; j < (NWORDS64_ORDER-1); j++) {
SHIFTR(scalar[j+1], scalar[j], 1, scalar[j], RADIX64);
}
scalar[NWORDS64_ORDER-1] >>= 1;
temp = (0 - digits[i-(i/d)*d]) & digits[i]; // if (digits_i=0 \/ 1) then temp = 0, else if (digits_i=-1) then temp = 1
// floor(scalar/2) + temp
scalar[0] = scalar[0] + temp;
carry = (temp & (uint64_t)is_digit_zero_ct((digit_t)scalar[0])); // carry = (scalar[0] < temp);
for (j = 1; j < NWORDS64_ORDER; j++)
{
scalar[j] = scalar[j] + carry;
carry = (carry & (uint64_t)is_digit_zero_ct((digit_t)scalar[j])); // carry = (scalar[j] < temp);
}
}
return;
}
static __inline void eccneg_extproj_precomp(point_extproj_precomp_t P, point_extproj_precomp_t Q)
{ // Point negation
// Input : point P in coordinates (X+Y,Y-X,2Z,2dT)
// Output: point Q = -P = (Y-X,X+Y,2Z,-2dT)
fp2copy1271(P->t2, Q->t2);
fp2copy1271(P->xy, Q->yx);
fp2copy1271(P->yx, Q->xy);
fp2copy1271(P->z2, Q->z2);
fp2neg1271(Q->t2);
}
static __inline void eccneg_precomp(point_precomp_t P, point_precomp_t Q)
{ // Point negation
// Input : point P in coordinates (x+y,y-x,2dt)
// Output: point Q = -P = (y-x,x+y,-2dt)
fp2copy1271(P->t2, Q->t2);
fp2copy1271(P->xy, Q->yx);
fp2copy1271(P->yx, Q->xy);
fp2neg1271(Q->t2);
}
bool ecc_mul_double(digit_t* k, point_t Q, digit_t* l, point_t R)
{ // Double scalar multiplication R = k*G + l*Q, where the G is the generator. Uses DOUBLE_SCALAR_TABLE, which contains multiples of G, Phi(G), Psi(G) and Phi(Psi(G)).
// Inputs: point Q in affine coordinates,
// scalars "k" and "l" in [0, 2^256-1].
// Output: R = k*G + l*Q in affine coordinates (x,y).
// The function uses wNAF with interleaving.
// SECURITY NOTE: this function is intended for a non-constant-time operation such as signature verification.
#if (USE_ENDO == true)
unsigned int position;
int i, digits_k1[65] = {0}, digits_k2[65] = {0}, digits_k3[65] = {0}, digits_k4[65] = {0};
int digits_l1[65] = {0}, digits_l2[65] = {0}, digits_l3[65] = {0}, digits_l4[65] = {0};
point_precomp_t V;
point_extproj_t Q1, Q2, Q3, Q4, T;
point_extproj_precomp_t U, Q_table1[NPOINTS_DOUBLEMUL_WQ], Q_table2[NPOINTS_DOUBLEMUL_WQ], Q_table3[NPOINTS_DOUBLEMUL_WQ], Q_table4[NPOINTS_DOUBLEMUL_WQ];
uint64_t k_scalars[4], l_scalars[4];
point_setup(Q, Q1); // Convert to representation (X,Y,1,Ta,Tb)
if (ecc_point_validate(Q1) == false) { // Check if point lies on the curve
return false;
}
// Computing endomorphisms over point Q
ecccopy(Q1, Q2);
ecc_phi(Q2);
ecccopy(Q1, Q3);
ecc_psi(Q3);
ecccopy(Q2, Q4);
ecc_psi(Q4);
decompose((uint64_t*)k, k_scalars); // Scalar decomposition
decompose((uint64_t*)l, l_scalars);
wNAF_recode(k_scalars[0], WP_DOUBLEBASE, digits_k1); // Scalar recoding
wNAF_recode(k_scalars[1], WP_DOUBLEBASE, digits_k2);
wNAF_recode(k_scalars[2], WP_DOUBLEBASE, digits_k3);
wNAF_recode(k_scalars[3], WP_DOUBLEBASE, digits_k4);
wNAF_recode(l_scalars[0], WQ_DOUBLEBASE, digits_l1);
wNAF_recode(l_scalars[1], WQ_DOUBLEBASE, digits_l2);
wNAF_recode(l_scalars[2], WQ_DOUBLEBASE, digits_l3);
wNAF_recode(l_scalars[3], WQ_DOUBLEBASE, digits_l4);
ecc_precomp_double(Q1, Q_table1, NPOINTS_DOUBLEMUL_WQ); // Precomputation
ecc_precomp_double(Q2, Q_table2, NPOINTS_DOUBLEMUL_WQ);
ecc_precomp_double(Q3, Q_table3, NPOINTS_DOUBLEMUL_WQ);
ecc_precomp_double(Q4, Q_table4, NPOINTS_DOUBLEMUL_WQ);
fp2zero1271(T->x); // Initialize T as the neutral point (0:1:1)
fp2zero1271(T->y); T->y[0][0] = 1;
fp2zero1271(T->z); T->z[0][0] = 1;
for (i = 64; i >= 0; i--)
{
eccdouble(T); // Double (X_T,Y_T,Z_T,Ta_T,Tb_T) = 2(X_T,Y_T,Z_T,Ta_T,Tb_T)
if (digits_l1[i] < 0) {
position = (-digits_l1[i])/2;
eccneg_extproj_precomp(Q_table1[position], U); // Load and negate U = (X_U,Y_U,Z_U,Td_U) <- -(X+Y,Y-X,2Z,2dT) from a point in the precomputed table
eccadd(U, T); // T = T+U = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_U,Y_U,Z_U,Td_U)
} else if (digits_l1[i] > 0) {
position = (digits_l1[i])/2; // Take U = (X_U,Y_U,Z_U,Td_U) <- (X+Y,Y-X,2Z,2dT) from a point in the precomputed table
eccadd(Q_table1[position], T); // T = T+U = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_U,Y_U,Z_U,Td_U)
}
if (digits_l2[i] < 0) {
position = (-digits_l2[i])/2;
eccneg_extproj_precomp(Q_table2[position], U);
eccadd(U, T);
} else if (digits_l2[i] > 0) {
position = (digits_l2[i])/2;
eccadd(Q_table2[position], T);
}
if (digits_l3[i] < 0) {
position = (-digits_l3[i])/2;
eccneg_extproj_precomp(Q_table3[position], U);
eccadd(U, T);
} else if (digits_l3[i] > 0) {
position = (digits_l3[i])/2;
eccadd(Q_table3[position], T);
}
if (digits_l4[i] < 0) {
position = (-digits_l4[i])/2;
eccneg_extproj_precomp(Q_table4[position], U);
eccadd(U, T);
} else if (digits_l4[i] > 0) {
position = (digits_l4[i])/2;
eccadd(Q_table4[position], T);
}
if (digits_k1[i] < 0) {
position = (-digits_k1[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[position], V); // Load and negate V = (X_V,Y_V,Z_V,Td_V) <- -(x+y,y-x,2dt) from a point in the precomputed table
eccmadd(V, T); // T = T+V = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_V,Y_V,Z_V,Td_V)
} else if (digits_k1[i] > 0) {
position = (digits_k1[i])/2; // Take V = (X_V,Y_V,Z_V,Td_V) <- (x+y,y-x,2dt) from a point in the precomputed table
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[position], T); // T = T+V = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_V,Y_V,Z_V,Td_V)
}
if (digits_k2[i] < 0) {
position = (-digits_k2[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k2[i] > 0) {
position = (digits_k2[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[NPOINTS_DOUBLEMUL_WP+position], T);
}
if (digits_k3[i] < 0) {
position = (-digits_k3[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[2*NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k3[i] > 0) {
position = (digits_k3[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[2*NPOINTS_DOUBLEMUL_WP+position], T);
}
if (digits_k4[i] < 0) {
position = (-digits_k4[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[3*NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k4[i] > 0) {
position = (digits_k4[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[3*NPOINTS_DOUBLEMUL_WP+position], T);
}
}
#else
point_t A;
point_extproj_t T;
point_extproj_precomp_t S;
if (ecc_mul(Q, l, A, false) == false) {
return false;
}
point_setup(A, T);
R1_to_R2(T, S);
ecc_mul_fixed(k, A);
point_setup(A, T);
eccadd(S, T);
#endif
eccnorm(T, R); // Output R = (x,y)
return true;
}
void ecc_precomp_double(point_extproj_t P, point_extproj_precomp_t* Table, unsigned int npoints)
{ // Generation of the precomputation table used internally by the double scalar multiplication function ecc_mul_double().
// Inputs: point P in representation (X,Y,Z,Ta,Tb),
// Table with storage for npoints,
// number of points "npoints".
// Output: Table containing multiples of the base point P using representation (X+Y,Y-X,2Z,2dT).
point_extproj_t Q;
point_extproj_precomp_t PP;
unsigned int i;
R1_to_R2(P, Table[0]); // Precomputed point Table[0] = P in coordinates (X+Y,Y-X,2Z,2dT)
eccdouble(P); // A = 2*P in (X,Y,Z,Ta,Tb)
R1_to_R3(P, PP); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,Z,T)
for (i = 1; i < npoints; i++) {
eccadd_core(Table[i-1], PP, Q); // Table[i] = Table[i-1]+2P using the representations (X,Y,Z,Ta,Tb) <- (X+Y,Y-X,2Z,2dT) + (X+Y,Y-X,Z,T)
R1_to_R2(Q, Table[i]); // Converting from (X,Y,Z,Ta,Tb) to (X+Y,Y-X,2Z,2dT)
}
return;
}
void wNAF_recode(uint64_t scalar, unsigned int w, int* digits)
{ // Computes wNAF recoding of a scalar, where digits are in set {0,+-1,+-3,...,+-(2^(w-1)-1)}
unsigned int i;
int digit, index = 0;
int val1 = (int)(1 << (w-1)) - 1; // 2^(w-1) - 1
int val2 = (int)(1 << w); // 2^w;
uint64_t k = scalar, mask = (uint64_t)val2 - 1; // 2^w - 1
while (k != 0)
{
digit = (int)(k & 1);
if (digit == 0) {
k >>= 1; // Shift scalar to the right by 1
digits[index] = 0;
} else {
digit = (int)(k & mask);
k >>= w; // Shift scalar to the right by w
if (digit > val1) {
digit -= val2;
}
if (digit < 0) { // scalar + 1
k += 1;
}
digits[index] = digit;
if (k != 0) { // Check if scalar != 0
for (i = 0; i < (w-1); i++)
{
index++;
digits[index] = 0;
}
}
}
index++;
}
return;
}