-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy patheccp2.c
1082 lines (917 loc) · 47.8 KB
/
eccp2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/***********************************************************************************
* FourQlib: a high-performance crypto library based on the elliptic curve FourQ
*
* Copyright (c) Microsoft Corporation. All rights reserved.
*
* Abstract: ECC operations over GF(p^2) exploiting endomorphisms
*
* This code is based on the paper "FourQ: four-dimensional decompositions on a
* Q-curve over the Mersenne prime" by Craig Costello and Patrick Longa, in Advances
* in Cryptology - ASIACRYPT, 2015.
* Preprint available at http://eprint.iacr.org/2015/565.
************************************************************************************/
#include "FourQ_internal.h"
#include "FourQ_params.h"
#include "FourQ_tables.h"
#include "../random/random.h"
#include "ARM/fp_arm.h"
/***********************************************/
/************* GF(p^2) FUNCTIONS ***************/
void fp2copy1271(f2elm_t a, f2elm_t c)
{// Copy of a GF(p^2) element, c = a
fpcopy1271(a[0], c[0]);
fpcopy1271(a[1], c[1]);
}
void fp2zero1271(f2elm_t a)
{// Zeroing a GF(p^2) element, a = 0
fpzero1271(a[0]);
fpzero1271(a[1]);
}
void fp2neg1271(f2elm_t a)
{// GF(p^2) negation, a = -a in GF((2^127-1)^2)
fpneg1271(a[0]);
fpneg1271(a[1]);
}
void fp2sqr1271(f2elm_t a, f2elm_t c)
{// GF(p^2) squaring, c = a^2 in GF((2^127-1)^2)
fp2sqr1271_a(a, c);
}
void fp2mul1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) multiplication, c = a*b in GF((2^127-1)^2)
fp2mul1271_a(a, b, c);
}
void fp2add1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) addition, c = a+b in GF((2^127-1)^2)
fp2add1271_a(a, b, c);
}
void fp2sub1271(f2elm_t a, f2elm_t b, f2elm_t c)
{// GF(p^2) subtraction, c = a-b in GF((2^127-1)^2)
fp2sub1271_a(a, b, c);
}
void fp2inv1271(f2elm_t a)
{// GF(p^2) inversion, a = (a0-i*a1)/(a0^2+a1^2)
f2elm_t t1;
fpsqr1271(a[0], t1[0]); // t10 = a0^2
fpsqr1271(a[1], t1[1]); // t11 = a1^2
fpadd1271(t1[0], t1[1], t1[0]); // t10 = a0^2+a1^2
fpinv1271(t1[0]); // t10 = (a0^2+a1^2)^-1
fpneg1271(a[1]); // a = a0-i*a1
fpmul1271(a[0], t1[0], a[0]);
fpmul1271(a[1], t1[0], a[1]); // a = (a0-i*a1)*(a0^2+a1^2)^-1
}
void felmt_randomize_point(point_extedwards_t P, felm_t random)
{ // Randomization of point coordinates using a random field element
// Input: P = (X,Y,Z,T) in extended twisted Edwards coordinates.
// Output: P = (X,Y,Z,T) in extended twisted Edwards coordinates,
// where X = random*(Xa+Xb*i), Y = random*(Ya+Yb*i), Z = random*(Za+Zb*i), T = random*(Ta+Tb*i).
fpmul1271(P->x[0], random, P->x[0]);
fpmul1271(P->x[1], random, P->x[1]);
fpmul1271(P->y[0], random, P->y[0]);
fpmul1271(P->y[1], random, P->y[1]);
fpmul1271(P->z[0], random, P->z[0]);
fpmul1271(P->z[1], random, P->z[1]);
fpmul1271(P->t[0], random, P->t[0]);
fpmul1271(P->t[1], random, P->t[1]);
}
void randomize_table(point_extedwards_t* Table, felm_t random)
{ // Randomization of all the point coordinates in the precomputed table using a random field element ///// NOTE: SHOULD WE RANDOMIZE POINTS WITH AN ELEMENT IN GF(P^2)
unsigned int i;
for (i = 0; i < 16; i++) {
felmt_randomize_point(Table[i], random);
}
}
void random_felmt(felm_t random)
{ // Generate random field element in [0, 2^127-1]
unsigned char* rand_byte = (unsigned char*)&random[0];
RandomBytesFunction(rand_byte, 16);
rand_byte[15] &= 0x7F;
}
__inline void clear_words(void* mem, unsigned int nwords)
{ // Clear integer-size digits from memory. "nwords" indicates the number of integer digits to be zeroed.
// This function uses the volatile type qualifier to inform the compiler not to optimize out the memory clearing.
// It has been tested with MSVS 2013 and GNU GCC 4.6.3, 4.7.3, 4.8.2 and 4.8.4. Users are responsible for verifying correctness with different compilers.
// See "Compliant Solution (C99)" at https://www.securecoding.cert.org/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations
unsigned int i;
volatile unsigned int *v = mem;
for (i = 0; i < nwords; i++)
v[i] = 0;
}
// Fixed GF(p^2) constants for the endomorphisms
static uint64_t ctau1[4] = {0x74DCD57CEBCE74C3, 0x1964DE2C3AFAD20C, 0x12, 0x0C};
static uint64_t ctaudual1[4] = {0x9ECAA6D9DECDF034, 0x4AA740EB23058652, 0x11, 0x7FFFFFFFFFFFFFF4};
static uint64_t cphi0[4] = {0xFFFFFFFFFFFFFFF7, 0x05, 0x4F65536CEF66F81A, 0x2553A0759182C329};
static uint64_t cphi1[4] = {0x07, 0x05, 0x334D90E9E28296F9, 0x62C8CAA0C50C62CF};
static uint64_t cphi2[4] = {0x15, 0x0F, 0x2C2CB7154F1DF391, 0x78DF262B6C9B5C98};
static uint64_t cphi3[4] = {0x03, 0x02, 0x92440457A7962EA4, 0x5084C6491D76342A};
static uint64_t cphi4[4] = {0x03, 0x03, 0xA1098C923AEC6855, 0x12440457A7962EA4};
static uint64_t cphi5[4] = {0x0F, 0x0A, 0x669B21D3C5052DF3, 0x459195418A18C59E};
static uint64_t cphi6[4] = {0x18, 0x12, 0xCD3643A78A0A5BE7, 0x0B232A8314318B3C};
static uint64_t cphi7[4] = {0x23, 0x18, 0x66C183035F48781A, 0x3963BC1C99E2EA1A};
static uint64_t cphi8[4] = {0xF0, 0xAA, 0x44E251582B5D0EF0, 0x1F529F860316CBE5};
static uint64_t cphi9[4] = {0xBEF, 0x870, 0x14D3E48976E2505, 0xFD52E9CFE00375B};
static uint64_t cpsi1[4] = {0xEDF07F4767E346EF, 0x2AF99E9A83D54A02, 0x13A, 0xDE};
static uint64_t cpsi2[4] = {0x143, 0xE4, 0x4C7DEB770E03F372, 0x21B8D07B99A81F03};
static uint64_t cpsi3[4] = {0x09, 0x06, 0x3A6E6ABE75E73A61, 0x4CB26F161D7D6906};
static uint64_t cpsi4[4] = {0xFFFFFFFFFFFFFFF6, 0x7FFFFFFFFFFFFFF9, 0xC59195418A18C59E, 0x334D90E9E28296F9};
// Fixed integer constants for the decomposition
// Close "offset" vector
static uint64_t c1 = {0x72482C5251A4559C};
static uint64_t c2 = {0x59F95B0ADD276F6C};
static uint64_t c3 = {0x7DD2D17C4625FA78};
static uint64_t c4 = {0x6BC57DEF56CE8877};
// Optimal basis vectors
static uint64_t b11 = {0x0906FF27E0A0A196};
static uint64_t b12 = {0x1363E862C22A2DA0};
static uint64_t b13 = {0x07426031ECC8030F};
static uint64_t b14 = {0x084F739986B9E651};
static uint64_t b21 = {0x1D495BEA84FCC2D4};
static uint64_t b24 = {0x25DBC5BC8DD167D0};
static uint64_t b31 = {0x17ABAD1D231F0302};
static uint64_t b32 = {0x02C4211AE388DA51};
static uint64_t b33 = {0x2E4D21C98927C49F};
static uint64_t b34 = {0x0A9E6F44C02ECD97};
static uint64_t b41 = {0x136E340A9108C83F};
static uint64_t b42 = {0x3122DF2DC3E0FF32};
static uint64_t b43 = {0x068A49F02AA8A9B5};
static uint64_t b44 = {0x18D5087896DE0AEA};
// Precomputed integers for fast-Babai rounding
static uint64_t ell1[4] = {0x259686E09D1A7D4F, 0xF75682ACE6A6BD66, 0xFC5BB5C5EA2BE5DF, 0x07};
static uint64_t ell2[4] = {0xD1BA1D84DD627AFB, 0x2BD235580F468D8D, 0x8FD4B04CAA6C0F8A, 0x03};
static uint64_t ell3[4] = {0x9B291A33678C203C, 0xC42BD6C965DCA902, 0xD038BF8D0BFFBAF6, 0x00};
static uint64_t ell4[4] = {0x12E5666B77E7FDC0, 0x81CBDC3714983D82, 0x1B073877A22D8410, 0x03};
// Fixed integer constants for scalar randomization
static uint64_t p11 = {0x190BE2D7F2E68811};
static uint64_t p12 = {0x2E5EBE12E05824E0};
static uint64_t p13 = {0x27C2D7D95E7F1AEB};
static uint64_t p14 = {0x02684DFF36C48F4F};
static uint64_t p21 = {0x36553EC277E34AE5};
static uint64_t p22 = {0x2E5EBE12E05824DF};
static uint64_t p23 = {0x27C2D7D95E7F1AEC};
static uint64_t p24 = {0x284413BBC495F71F};
static uint64_t p31 = {0x39BE8F1CF6A62CA9};
static uint64_t p32 = {0x1DBEF6CB01B6D191};
static uint64_t p33 = {0x00B81641C21F595B};
static uint64_t p34 = {0x04B749AA70397695};
static uint64_t p41 = {0x3F5C3DEA5883EC7B};
static uint64_t p42 = {0x1AFAD5B01E2DF73F};
static uint64_t p43 = {0x2F05380B4B471DFB};
static uint64_t p44 = {0x1FF4A0223DDC10CE};
/***********************************************/
/********** CURVE/SCALAR FUNCTIONS ***********/
static __inline void ecc_tau(point_extedwards_t P)
{ // Apply tau mapping to a point, P = tau(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0;
fp2sqr1271(P->x, t0); // t0 = X1^2
fp2sqr1271(P->y, P->t); // T = Y1^2
fp2mul1271(P->x, P->y, P->x); // X = X1*Y1
fp2sqr1271(P->z, P->y); // Y = Z1^2
fp2add1271(t0, P->t, P->z); // Z = X1^2+Y1^2
fp2add1271(P->y, P->y, P->y); // Y = 2*Z1^2
fp2sub1271(t0, P->t, t0); // t0 = X1^2-Y1^2
fp2neg1271(P->y); // Y = -2*Z1^2
fp2mul1271(P->x, t0, P->x); // X = X1*Y1*(X1^2-Y1^2)
fp2sub1271(P->y, t0, P->y); // Y = -2*Z1^2-(X1^2-Y1^2)
fp2mul1271(P->x, (felm_t*)&ctau1, P->x); // Xfinal = X*ctau1
fp2mul1271(P->y, P->z, P->y); // Yfinal = Y*Z
fp2mul1271(P->z, t0, P->z); // Zfinal = t0*Z
}
static __inline void ecc_tau_dual(point_extedwards_t P)
{ // Apply tau_dual mapping to a point, P = tau_dual(P)
// Input: P = (X1:Y1:Z1:T1) on Ehat in extended twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tfinal) on E in extended twisted Edwards coordinates
f2elm_t t0, t1;
fp2sqr1271(P->x, t0); // t0 = X1^2
fp2sqr1271(P->z, P->t); // T = Z1^2
fp2sqr1271(P->y, t1); // t1 = Y1^2
fp2add1271(P->t, P->t, P->z); // Z = 2*Z1^2
fp2sub1271(t1, t0, P->t); // T = Y1^2-X1^2
fp2add1271(t0, t1, t0); // t0 = X1^2+Y1^2
fp2mul1271(P->x, P->y, P->x); // X = X1*Y1
fp2sub1271(P->z, P->t, P->z); // Z = 2*Z1^2-(Y1^2-X1^2)
fp2mul1271(P->x, (felm_t*)&ctaudual1, t1); // t1 = ctaudual1*X1
fp2mul1271(P->z, P->t, P->y); // Yfinal = Z*T
fp2mul1271(t0, t1, P->x); // Xfinal = t0*t1
fp2mul1271(P->z, t0, P->z); // Zfinal = Z*t0
fp2mul1271(P->t, t1, P->t); // Tfinal = T*t1
}
static __inline void ecc_delphidel(point_extedwards_t P)
{ // Apply delta_phi_delta mapping to a point, P = delta(phi_W(delta_inv(P))),
// where phi_W is the endomorphism on the Weierstrass form.
// Input: P = (X1:Y1:Z1) on Ehat in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0, t1, t2, t3, t4, t5;
fp2sqr1271(P->y, t2); // t2 = Y1^2
fp2sqr1271(P->z, t4); // t4 = Z1^2
fp2mul1271(t4, (felm_t*)&cphi4, t0); // t0 = cphi4*t4
fp2mul1271(P->y, P->z, t3); // t3 = Y1*Z1
fp2add1271(t0, t2, t0); // t0 = t0+t2
fp2mul1271(t3, (felm_t*)&cphi3, t1); // t1 = cphi3*t3
fp2sub1271(t0, t1, t5); // t5 = t0-t1
fp2add1271(t0, t1, t0); // t0 = t0+t1
fp2mul1271(t0, P->z, t0); // t0 = t0*Z1
fp2mul1271(t3, (felm_t*)&cphi1, t1); // t1 = cphi1*t3
fp2mul1271(t0, t5, t0); // t0 = t0*t5
fp2mul1271(t4, (felm_t*)&cphi2, t5); // t5 = cphi2*t4
fp2add1271(t2, t5, t5); // t5 = t2+t5
fp2sub1271(t1, t5, P->t); // T = t1-t5
fp2add1271(t1, t5, t1); // t1 = t1+t5
fp2mul1271(P->t, t1, P->t); // T = t1*P->t
fp2mul1271(P->t, (felm_t*)&cphi0, P->t); // T = cphi0*T
fp2mul1271(P->x, P->t, P->x); // X = X1*T
fp2sqr1271(t2, P->t); // T = t2^2
fp2sqr1271(t3, t2); // t2 = t3^2
fp2sqr1271(t4, t3); // t3 = t4^2
fp2mul1271(t2, (felm_t*)&cphi8, t1); // t1 = cphi8*t2
fp2mul1271(t3, (felm_t*)&cphi9, t5); // t5 = cphi9*t3
fp2add1271(t1, P->t, t1); // t1 = t1+T
fp2mul1271(t2, (felm_t*)&cphi6, t2); // t2 = cphi6*t2
fp2mul1271(t3, (felm_t*)&cphi7, t3); // t3 = cphi7*t3
fp2add1271(t1, t5, t1); // t1 = t1+t5
fp2add1271(t2, t3, t2); // t2 = t2+t3
fp2mul1271(t1, P->y, t1); // t1 = Y1*t1
fp2add1271(P->t, t2, P->y); // Y = T+t2
fp2mul1271(P->x, t1, P->x); // X = X*t1
fp2mul1271(P->y, (felm_t*)&cphi5, P->y); // Y = cphi5*Y
fpneg1271(P->x[1]); // Xfinal = X^p
fp2mul1271(P->y, P->z, P->y); // Y = Y*Z1
fp2mul1271(t0, t1, P->z); // Z = t0*t1
fp2mul1271(P->y, t0, P->y); // Y = Y*t0
fpneg1271(P->z[1]); // Zfinal = Z^p
fpneg1271(P->y[1]); // Yfinal = Y^p
}
static __inline void ecc_delpsidel(point_extedwards_t P)
{ // Apply delta_psi_delta mapping to a point, P = delta(psi_W(delta_inv(P))),
// where psi_W is the endomorphism on the Weierstrass form.
// Input: P = (X1:Y1:Z1) on Ehat in twisted Edwards coordinates
// Output: P = (Xfinal:Yfinal:Zfinal) on Ehat in twisted Edwards coordinates
f2elm_t t0, t1;
fpneg1271(P->x[1]); // X = X1^p
fpneg1271(P->z[1]); // Z = Z1^p
fpneg1271(P->y[1]); // Y = Y1^p
fp2sqr1271(P->z, P->t); // T = Z1^p^2
fp2sqr1271(P->x, t0); // t0 = X1^p^2
fp2mul1271(P->x, P->t, P->x); // X = X1^p*Z1^p^2
fp2mul1271(P->t, (felm_t*)&cpsi2, P->z); // Z = cpsi2*Z1^p^2
fp2mul1271(P->t, (felm_t*)&cpsi3, t1); // t1 = cpsi3*Z1^p^2
fp2mul1271(P->t, (felm_t*)&cpsi4, P->t); // T = cpsi4*Z1^p^2
fp2add1271(t0, P->z, P->z); // Z = X1^p^2 + cpsi2*Z1^p^2
fp2add1271(t0, P->t, P->t); // T = X1^p^2 + cpsi4*Z1^p^2
fp2add1271(t0, t1, t1); // t1 = X1^p^2 + cpsi3*Z1^p^2
fp2neg1271(P->t); // T = -(X1^p^2 + cpsi4*Z1^p^2)
fp2mul1271(P->z, P->y, P->z); // Z = Y1^p*(X1^p^2 + cpsi2*Z1^p^2)
fp2mul1271(P->x, P->t, P->x); // X = -X1^p*Z1^p^2*(X1^p^2 + cpsi4*Z1^p^2)
fp2mul1271(t1, P->z, P->y); // Yfinal = t1*Z
fp2mul1271(P->x, (felm_t*)&cpsi1, P->x); // Xfinal = cpsi1*X
fp2mul1271(P->z, P->t, P->z); // Zfinal = Z*T
}
void ecc_psi(point_extedwards_t P)
{ // Apply psi mapping to a point, P = psi(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tfinal) on E in extended twisted Edwards coordinates
ecc_tau(P);
ecc_delpsidel(P);
ecc_tau_dual(P);
}
void ecc_phi(point_extedwards_t P)
{ // Apply phi mapping to a point, P = phi(P)
// Input: P = (X1:Y1:Z1) on E in twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tfinal) on E in extended twisted Edwards coordinates
ecc_tau(P);
ecc_delphidel(P);
ecc_tau_dual(P);
}
static __inline void mul_truncate(uint64_t* s, uint64_t* C, uint64_t* out)
{ // 256-bit multiplication with truncation for the scalar decomposition
// Outputs 64-bit value "out" = (uint64_t)((s * C) >> 256).
uint128_t tt1, tt2;
unsigned int carry1, carry2;
uint64_t temp;
MUL128(s[0], C[0], tt2);
tt2[0] = tt2[1];
tt2[1] = 0;
MUL128(s[1], C[0], tt1);
ADD128(tt1, tt2, tt1);
MUL128(s[0], C[1], tt2);
ADC128(tt1, tt2, carry1, tt1);
tt1[0] = tt1[1];
tt1[1] = (uint64_t)(carry1);
MUL128(s[2], C[0], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[0], C[2], tt2);
ADC128(tt1, tt2, carry1, tt1);
MUL128(s[1], C[1], tt2);
ADC128(tt1, tt2, carry2, tt1);
tt1[0] = tt1[1];
tt1[1] = (uint64_t)carry1 + (uint64_t)carry2;
MUL128(s[0], C[3], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[3], C[0], tt2);
ADC128(tt1, tt2, carry1, tt1);
MUL128(s[1], C[2], tt2);
ADC128(tt1, tt2, carry2, tt1);
temp = (uint64_t)carry1 + (uint64_t)carry2;
MUL128(s[2], C[1], tt2);
ADC128(tt1, tt2, carry2, tt1);
tt1[0] = tt1[1];
tt1[1] = temp + (uint64_t)carry2;
MUL128(s[1], C[3], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[3], C[1], tt2);
ADD128(tt1, tt2, tt1);
MUL128(s[2], C[2], tt2);
ADD128(tt1, tt2, tt1);
*out = tt1[0];
}
void ecc_precomp(point_extedwards_t P, point_extedwards_t R, point_extedwards_t *Table)
{ // Generation of the precomputation table used by the variable-base scalar multiplication ecc_mul_SCA_secure().
// Input: P = (XP,YP,ZP,TP) in extended twisted Edwards coordinates
// R = (XR,YR,ZR,TR) in extended twisted Edwards coordinates. R is used for point blinding
// Output: Table containing 16 points: P, P+phi(P), P+psi(P), P+phi(P)+psi(P), P+psi(phi(P)), P+phi(P)+psi(phi(P)), P+psi(P)+psi(phi(P)), P+phi(P)+psi(P)+psi(phi(P))
// Precomputed points use the representation (X+Y,Y-X,2Z,2dT) in extended twisted Edwards coordinates
point_extedwards_t S, T, U;
unsigned int i;
// Negating the random point R, Table[0] = -R
ecccopy(R, Table[0]);
fp2neg1271(Table[0]->x);
fp2neg1271(Table[0]->t);
// Generating S = phi(P) = (XS,YS,ZS,TS)
ecccopy(P, S);
ecc_phi(S);
// Generating T = psi(T) = (XT,YT,ZT,TT)
ecccopy(P, T);
ecc_psi(T);
// Generating U = psi(phi(P)) = (XU,YU,ZU,TU)
ecccopy(S, U);
ecc_psi(U);
eccadd(Table[0], P, Table[1]); // Table[1] = -R+P
eccadd(Table[0], S, Table[2]); // Table[2] = -R+S
eccadd(Table[1], S, Table[3]); // Table[3] = -R+P+S
eccadd(Table[0], T, Table[4]); // Table[4] = -R+T
eccadd(Table[4], P, Table[5]); // Table[5] = -R+P+T
eccadd(Table[4], S, Table[6]); // Table[6] = -R+S+T
eccadd(Table[6], P, Table[7]); // Table[7] = -R+P+S+T
eccadd(Table[0], U, Table[8]); // Table[8] = -R+U
eccadd(Table[1], U, Table[9]); // Table[9] = -R+P+U
eccadd(Table[2], U, Table[10]); // Table[10] = -R+S+U
eccadd(Table[3], U, Table[11]); // Table[11] = -R+P+S+U
eccadd(Table[4], U, Table[12]); // Table[12] = -R+T+U
eccadd(Table[5], U, Table[13]); // Table[13] = -R+P+T+U
eccadd(Table[6], U, Table[14]); // Table[14] = -R+S+T+U
eccadd(Table[7], U, Table[15]); // Table[15] = -R+P+S+T+U
for (i = 0; i < 16; i++) {
fp2add1271(Table[i]->x, Table[i]->y, S->x); // Converting to coordinates (X+Y,Y-X,2*Z,2*d*T)
fp2sub1271(Table[i]->x, Table[i]->y, Table[i]->y);
fp2copy1271(S->x, Table[i]->x);
fp2add1271(Table[i]->z, Table[i]->z, Table[i]->z);
fp2mul1271(Table[i]->t, (felm_t*)&PARAMETER_d, Table[i]->t);
fp2add1271(Table[i]->t, Table[i]->t, Table[i]->t);
}
}
void decompose(uint64_t* k, uint64_t* scalars)
{ // Scalar decomposition for the variable-base scalar multiplication
// Input: scalar in the range [0, 2^256-1].
// Output: 4 64-bit sub-scalars.
uint64_t a1, a2, a3, a4;
mul_truncate(k, ell1, &a1);
mul_truncate(k, ell2, &a2);
mul_truncate(k, ell3, &a3);
mul_truncate(k, ell4, &a4);
scalars[0] = (uint64_t)k[0] - (uint64_t)a1*b11 - (uint64_t)a2*b21 - (uint64_t)a3*b31 - (uint64_t)a4*b41 + c1;
scalars[1] = (uint64_t)a1*b12 + (uint64_t)a2 - (uint64_t)a3*b32 - (uint64_t)a4*b42 + c2;
scalars[2] = (uint64_t)a3*b33 - (uint64_t)a1*b13 - (uint64_t)a2 + (uint64_t)a4*b43 + c3;
scalars[3] = (uint64_t)a1*b14 - (uint64_t)a2*b24 - (uint64_t)a3*b34 + (uint64_t)a4*b44 + c4;
}
void randomize(uint64_t* scalars, unsigned char* r, uint128_t* random_scalars)
{ // Scalar randomization for the variable-base scalar multiplication
// Input: 4 64-bit sub-scalars, and 4 16-bit random values.
// Output: 4 80-bit sub-scalars.
uint128_t tt0;
uint64_t r0 = (uint64_t)r[0], r1 = (uint64_t)r[1];
uint64_t r2 = (uint64_t)r[2], r3 = (uint64_t)r[3];
random_scalars[0][1] = 0; random_scalars[0][0] = scalars[0];
random_scalars[1][1] = 0; random_scalars[1][0] = scalars[1];
random_scalars[2][1] = 0; random_scalars[2][0] = scalars[2];
random_scalars[3][1] = 0; random_scalars[3][0] = scalars[3];
MUL128(r0, p11, tt0);
ADD128((digit_t*)&random_scalars[0], tt0, (digit_t*)&random_scalars[0]);
MUL128(r1, p21, tt0);
ADD128((digit_t*)&random_scalars[0], tt0, (digit_t*)&random_scalars[0]);
MUL128(r2, p31, tt0);
ADD128((digit_t*)&random_scalars[0], tt0, (digit_t*)&random_scalars[0]);
MUL128(r3, p41, tt0);
ADD128((digit_t*)&random_scalars[0], tt0, (digit_t*)&random_scalars[0]);
MUL128(r0, p12, tt0);
ADD128((digit_t*)&random_scalars[1], tt0, (digit_t*)&random_scalars[1]);
MUL128(r1, p22, tt0);
ADD128((digit_t*)&random_scalars[1], tt0, (digit_t*)&random_scalars[1]);
MUL128(r2, p32, tt0);
ADD128((digit_t*)&random_scalars[1], tt0, (digit_t*)&random_scalars[1]);
MUL128(r3, p42, tt0);
ADD128((digit_t*)&random_scalars[1], tt0, (digit_t*)&random_scalars[1]);
MUL128(r0, p13, tt0);
ADD128((digit_t*)&random_scalars[2], tt0, (digit_t*)&random_scalars[2]);
MUL128(r1, p23, tt0);
ADD128((digit_t*)&random_scalars[2], tt0, (digit_t*)&random_scalars[2]);
MUL128(r2, p33, tt0);
ADD128((digit_t*)&random_scalars[2], tt0, (digit_t*)&random_scalars[2]);
MUL128(r3, p43, tt0);
ADD128((digit_t*)&random_scalars[2], tt0, (digit_t*)&random_scalars[2]);
MUL128(r0, p14, tt0);
ADD128((digit_t*)&random_scalars[3], tt0, (digit_t*)&random_scalars[3]);
MUL128(r1, p24, tt0);
ADD128((digit_t*)&random_scalars[3], tt0, (digit_t*)&random_scalars[3]);
MUL128(r2, p34, tt0);
ADD128((digit_t*)&random_scalars[3], tt0, (digit_t*)&random_scalars[3]);
MUL128(r3, p44, tt0);
ADD128((digit_t*)&random_scalars[3], tt0, (digit_t*)&random_scalars[3]);
}
void recode(uint128_t* scalars, unsigned int* digits)
{ // Recoding sub-scalars for use in the variable-base scalar multiplication.
// Input: 4 80-bit sub-scalars passed through "scalars", which are obtained after calling randomize().
// Outputs: "digits" array with 80 nonzero entries. Each entry is in the range [0, 15], corresponding to one entry in the precomputed table.
unsigned int i, bit;
for (i = 0; i < 64; i++)
{
bit = (unsigned int)(scalars[0][0]) & 1;
scalars[0][0] >>= 1;
digits[i] = bit;
bit = (unsigned int)(scalars[1][0]) & 1;
scalars[1][0] >>= 1;
digits[i] += (bit << 1);
bit = (unsigned int)(scalars[2][0]) & 1;
scalars[2][0] >>= 1;
digits[i] += (bit << 2);
bit = (unsigned int)(scalars[3][0]) & 1;
scalars[3][0] >>= 1;
digits[i] += (bit << 3);
}
for (i = 64; i < 80; i++)
{
bit = (unsigned int)scalars[0][1] & 1;
scalars[0][1] >>= 1;
digits[i] = bit;
bit = (unsigned int)scalars[1][1] & 1;
scalars[1][1] >>= 1;
digits[i] += (bit << 1);
bit = (unsigned int)scalars[2][1] & 1;
scalars[2][1] >>= 1;
digits[i] += (bit << 2);
bit = (unsigned int)scalars[3][1] & 1;
scalars[3][1] >>= 1;
digits[i] += (bit << 3);
}
}
void cofactor_clearing(point_extedwards_t P)
{ // Co-factor clearing
// Input: P = (X1,Y1,Z1,T1) in extended twisted Edwards coordinates
// Output: P = 392*P = (Xfinal,Yfinal,Zfinal,Tfinal) in extended twisted Edwards coordinates
point_extedwards_t Q;
ecccopy(P, Q);
eccdouble(P); // P = 2*P using representations (X,Y,Z,T) <- 2*(X,Y,Z,T)
eccadd(P, Q, P); // P = P+Q using representations (X,Y,Z,T) <- (X,Y,Z,T) + (X,Y,Z,T)
eccdouble(P);
eccdouble(P);
eccdouble(P);
eccdouble(P);
eccadd(P, Q, P);
eccdouble(P);
eccdouble(P);
eccdouble(P);
}
void select_f2elm(f2elm_t a, f2elm_t b, digit_t bit, f2elm_t c)
{ // Select c <- a if bit = 0, c <- b if bit = 1
unsigned int j;
digit_t mask, temp, value = 0xAAAAAAAA;
// If digit=0 mask = 0x55...5 else mask = 0xAA...A
mask = bit - 1;
mask = (mask & ~value) | (~mask & value);
for (j = 0; j < NWORDS_FIELD; j++) {
temp = a[0][j] ^ b[0][j];
c[0][j] = ((mask & temp) ^ a[0][j]) ^ (value & temp);
temp = a[1][j] ^ b[1][j];
c[1][j] = ((mask & temp) ^ a[1][j]) ^ (value & temp);
}
}
bool ecc_mul_SCA_secure(point_t P, point_t R, digit_t* k, point_t Q, bool clear_cofactor)
{ // Variable-base scalar multiplication Q = k*P using a 4-dimensional decomposition and protected against side-channel attacks
// The computation is executed as Q = (k*P + R) - R with a random point R used for point blinding
// Inputs: scalar "k" in [0, 2^256-1],
// point P = (x,y) in affine coordinates,
// random point R = (x,y) in affine coordinates,
// clear_cofactor = 1 (TRUE) or 0 (FALSE) whether cofactor clearing is required or not, respectively.
// Output: Q = k*P in affine coordinates (x,y).
// R is updated to 2*R.
// This function performs point validation and (if selected) cofactor clearing.
point_extedwards_t PP, RR, S, Table[16];
uint64_t scalars[NWORDS64_ORDER];
uint128_t rand_scalars[NWORDS64_ORDER];
unsigned int digits[80];
unsigned char rand_bytes[8];
digit_t bit;
f2elm_t Ta, Tb;
felm_t rand_felmt[82];
int i;
point_setup(P, PP); // Convert to representation (X,Y,1,T)
if (ecc_point_validate(PP) == false) { // Check if point lies on the curve
return false;
}
if (clear_cofactor == true) {
cofactor_clearing(PP);
}
point_setup(R, RR); // Convert to representation (X,Y,1,T)
if (ecc_point_validate(RR) == false) { // Check if blinding point lies on the curve
return false;
}
RandomBytesFunction((unsigned char*)rand_felmt[0], 82*16);
bit = rand_felmt[81][NWORDS_FIELD-1] >> (RADIX-1);
for (i = 0; i < 82; i++) {
rand_felmt[i][NWORDS_FIELD-1] &= (digit_t)(-1) >> 1;
}
felmt_randomize_point(RR, rand_felmt[81]); // Randomization of R's coordinates
ecccopy(RR, S); // Update R = ((-1)^b*3)*R
eccdouble(RR);
eccadd(S, RR, S);
ecccopy(S, RR);
fp2neg1271(S->y);
fp2neg1271(S->t);
select_f2elm(RR->y, S->y, bit, RR->y);
select_f2elm(RR->t, S->t, bit, RR->t);
felmt_randomize_point(PP, rand_felmt[80]); // Randomization of P's coordinates
decompose((uint64_t*) k, scalars); // Scalar decomposition
RandomBytesFunction(&rand_bytes[0], 8);
randomize(scalars, rand_bytes, rand_scalars); // Scalar randomization
recode(rand_scalars, digits); // Scalar recoding
ecc_precomp(PP, RR, Table); // Precomputation
ecccopy(RR, PP);
for (i = 79; i >= 0; i--)
{
eccdouble(PP); // P = 2*P using representations (X,Y,Z,T) <- 2*(X,Y,Z)
#ifdef FULL_TABLE_RANDOMIZATION
randomize_table(Table, rand_felmt[i]); // Randomization of the full table
table_lookup_1x16(Table, S, digits[i]); // Extract point S in (X+Y,Y-X,2Z,2dT) representation
#else
table_lookup_1x16(Table, S, digits[i]); // Extract point S in (X+Y,Y-X,2Z,2dT) representation
felmt_randomize_point(S, rand_felmt[i]); // Randomization of the extracted point
#endif
eccadd_core(PP, S, PP, Ta, Tb); // P = P+S using representations (X,Y,Z,Ta,Tb) <- (X,Y,Z,T) + (X+Y,Y-X,2Z,2dT)
}
fp2mul1271(Ta, Tb, PP->t);
eccadd_core(PP, Table[0], PP, Ta, Tb); // Final correction: (k*P + R) - R
eccnorm2(PP, Q, RR, R); // Converting output and blinding point to affine coordinates (x,y).
return true;
}
void eccset(point_t P)
{ // Set generator
// Output: P = (x,y)
fp2copy1271((felm_t*)&GENERATOR_x, P->x); // X1
fp2copy1271((felm_t*)&GENERATOR_y, P->y); // Y1
}
void eccnorm(point_extedwards_t P, point_t Q)
{ // Normalize a projective point (X1:Y1:Z1), including full reduction
// Input: P = (X1:Y1:Z1) in twisted Edwards coordinates
// Output: Q = (X1/Z1,Y1/Z1), corresponding to (X1:Y1:Z1:T1) in extended twisted Edwards coordinates
fp2inv1271(P->z); // Z1 = Z1^-1
fp2mul1271(P->x, P->z, Q->x); // X1 = X1/Z1
fp2mul1271(P->y, P->z, Q->y); // Y1 = Y1/Z1
mod1271(Q->x[0]); mod1271(Q->x[1]);
mod1271(Q->y[0]); mod1271(Q->y[1]);
}
void eccnorm2(point_extedwards_t P, point_t Q, point_extedwards_t R, point_t S)
{ // Normalize two projective points, including full reduction
// Inputs: P = (X1:Y1:Z1) and R = (X2:Y2:Z2) in twisted Edwards coordinates
// Outputs: Q = (X1/Z1,Y1/Z1) and S = (X2/Z2,Y2/Z2) in affine coordinates
f2elm_t t1;
fp2mul1271(P->z, R->z, t1); // t1 = Z1*Z2
fp2inv1271(t1); // t1 = (Z1*Z2)^-1
fp2mul1271(R->z, t1, Q->y); // yQ = Z1^-1
fp2mul1271(Q->y, P->x, Q->x); // xQ = X1/Z1
fp2mul1271(Q->y, P->y, Q->y); // yQ = Y1/Z1
mod1271(Q->x[0]); mod1271(Q->x[1]);
mod1271(Q->y[0]); mod1271(Q->y[1]);
fp2mul1271(t1, P->z, t1); // t1 = Z2^-1
fp2mul1271(R->x, t1, S->x); // xS = X2/Z2
fp2mul1271(R->y, t1, S->y); // yS = Y2/Z2
mod1271(S->x[0]); mod1271(S->x[1]);
mod1271(S->y[0]); mod1271(S->y[1]);
}
void eccdouble(point_extedwards_t P)
{ // Point doubling 2P
// Input: P = (X1:Y1:Z1:T1) in twisted Edwards coordinates
// Output: 2P = (Xfinal,Yfinal,Zfinal,Tfinal) in extended twisted Edwards coordinates
f2elm_t t1, t2, t3;
fp2sqr1271(P->x, t1); // t1 = X1^2
fp2sqr1271(P->y, P->t); // T = Y1^2
fp2add1271(P->x, P->y, P->x); // X1 = X1+Y1
fp2add1271(t1, P->t, t2); // t2 = X1^2+Y1^2
fp2sub1271(P->t, t1, t1); // t1 = Y1^2-X1^2
fp2sqr1271(P->z, P->t); // T = Z1^2
fp2sqr1271(P->x, t3); // t3 = (X1+Y1)^2
fp2add1271(P->t, P->t, P->t); // T = 2Z1^2
fp2sub1271(t3, t2, t3); // t3 = 2X1*Y1 = (X1+Y1)^2-(X1^2+Y1^2)
fp2sub1271(P->t, t1, P->t); // T = 2Z1^2-(Y1^2-X1^2)
fp2mul1271(t1, t2, P->y); // Yfinal = (X1^2+Y1^2)(Y1^2-X1^2)
fp2mul1271(P->t, t3, P->x); // Xfinal = 2X1Y1*[2Z1^2-(Y1^2-X1^2)]
fp2mul1271(t1, P->t, P->z); // Zfinal = (Y1^2-X1^2)[2Z1^2-(Y1^2-X1^2)]
fp2mul1271(t2, t3, P->t); // Tfinal = 2X1Y1*(X1^2+Y1^2)
}
void eccadd_core(point_extedwards_t P, point_extedwards_t Q, point_extedwards_t R, f2elm_t Ta, f2elm_t Tb)
{ // Basic point addition R = P+Q or R = P+P
// Inputs: P = (X1,Y1,Z1,T1) in extended twisted Edwards coordinates
// Q = (X2+Y2,Y2-X2,2Z2,2dT2) in extended twisted Edwards coordinates
// Output: R = (Xfinal,Yfinal,Zfinal,Tfinal) in extended twisted Edwards coordinates. Tfinal is only used for temporary storage
// Tafinal and Tbfinal such that Tfinal = Tafinal*Tbfinal
f2elm_t t1;
fp2mul1271(P->z, Q->z, R->z); // Z = 2Z1*Z2
fp2mul1271(P->t, Q->t, R->t); // T = 2dT1*T2
fp2add1271(P->x, P->y, Ta); // Ta = X1+Y1
fp2mul1271(Ta, Q->x, t1); // t1 = (X1+Y1)(X2+Y2)
fp2sub1271(P->x, P->y, Ta); // Ta = X1-Y1
fp2add1271(R->z, R->t, R->y); // Y = alpha
fp2mul1271(Ta, Q->y, Ta); // Ta = (X1-Y1)(X2-Y2)
fp2sub1271(R->z, R->t, R->z); // Z = theta
fp2sub1271(t1, Ta, Tb); // Tbfinal = beta = (X1+Y1)(X2+Y2)-(X1-Y1)(X2-Y2)
fp2add1271(t1, Ta, Ta); // Tafinal = omega = (X1+Y1)(X2+Y2)+(X1-Y1)(X2-Y2)
fp2mul1271(Tb, R->z, R->x); // Xfinal = beta*theta
fp2mul1271(R->z, R->y, R->z); // Zfinal = theta*alpha
fp2mul1271(R->y, Ta, R->y); // Yfinal = alpha*omega
}
void eccadd(point_extedwards_t P, point_extedwards_t Q, point_extedwards_t R)
{ // Complete point addition P = P+Q or P = P+P
// Inputs: P = (X1,Y1,Z1,T1) in extended twisted Edwards coordinates
// Q = (X2,Y2,Z2,T2) in extended twisted Edwards coordinates
// Output: P = (Xfinal,Yfinal,Zfinal,Tfinal) in extended twisted Edwards coordinates
f2elm_t Ta, Tb, t1;
fp2mul1271(P->z, Q->z, R->z); // Z = Z1*Z2
fp2mul1271(P->t, Q->t, R->t); // T = T1*T2
fp2add1271(R->z, R->z, R->z); // Z = 2Z1*Z2
fp2add1271(R->t, R->t, R->t); // T = 2T1*T2
fp2add1271(P->x, P->y, Ta); // Ta = X1+Y1
fp2add1271(Q->x, Q->y, Tb); // Tb = X2+Y2
fp2mul1271(R->t, (felm_t*)&PARAMETER_d, R->t); // T = 2d*T1*T2
fp2mul1271(Ta, Tb, t1); // t1 = (X1+Y1)(X2+Y2)
fp2sub1271(P->x, P->y, Ta); // Ta = X1-Y1
fp2sub1271(Q->x, Q->y, Tb); // Tb = X2-Y2
fp2add1271(R->z, R->t, R->y); // Y = alpha
fp2mul1271(Ta, Tb, Ta); // Ta = (X1-Y1)(X2-Y2)
fp2sub1271(R->z, R->t, R->z); // Z = theta
fp2sub1271(t1, Ta, Tb); // Tb = beta = (X1+Y1)(X2+Y2)-(X1-Y1)(X2-Y2)
fp2add1271(t1, Ta, Ta); // Ta = omega = (X1+Y1)(X2+Y2)+(X1-Y1)(X2-Y2)
fp2mul1271(Tb, R->z, R->x); // Xfinal = beta*theta
fp2mul1271(R->z, R->y, R->z); // Zfinal = theta*alpha
fp2mul1271(R->y, Ta, R->y); // Yfinal = alpha*omega
fp2mul1271(Ta, Tb, R->t); // Tfinal = Ta*Tb
}
void point_setup(point_t P, point_extedwards_t Q)
{ // Point conversion to representation (X,Y,Z,T)
// Input: P = (x,y) in affine coordinates
// Output: P = (X,Y,1,T) corresponding to (X:Y:Z:T) in extended twisted Edwards coordinates
fp2copy1271(P->x, Q->x);
fp2copy1271(P->y, Q->y);
fp2mul1271(P->x, P->y, Q->t); // T = X*Y
fp2zero1271(Q->z); Q->z[0][0]=1; // Z = 1
}
bool ecc_point_validate(point_extedwards_t P)
{ // Point validation: check if point lies on the curve
// Input: P = (x,y) in affine coordinates, where x, y in [0, 2^127-1].
// Output: TRUE (1) if point lies on the curve E: -x^2+y^2-1-dx^2*y^2 = 0, FALSE (0) otherwise.
// SECURITY NOTE: this function does not run in constant time (input point P is assumed to be public).
f2elm_t t1, t2, t3;
fp2sqr1271(P->y, t1);
fp2sqr1271(P->x, t2);
fp2sub1271(t1, t2, t3); // -x^2 + y^2
fp2mul1271(t1, t2, t1); // x^2*y^2
fp2mul1271((felm_t*)&PARAMETER_d, t1, t2); // dx^2*y^2
fp2zero1271(t1); t1[0][0] = 1; // t1 = 1
fp2add1271(t2, t1, t2); // 1 + dx^2*y^2
fp2sub1271(t3, t2, t1); // -x^2 + y^2 - 1 - dx^2*y^2
return ((is_digit_zero_ct(t1[0][0] | t1[0][1] | t1[0][2] | t1[0][3]) || is_digit_zero_ct((t1[0][0]+1) | (t1[0][1]+1) | (t1[0][2]+1) | (t1[0][3]+1))) &&
(is_digit_zero_ct(t1[1][0] | t1[1][1] | t1[1][2] | t1[1][3]) || is_digit_zero_ct((t1[1][0]+1) | (t1[1][1]+1) | (t1[1][2]+1) | (t1[1][3]+1))));
}
static __inline void eccmadd(point_precomp_t Q, point_extedwards_t P)
{ // Mixed point addition P = P+Q or P = P+P
// Inputs: P = (X1,Y1,Z1,T1) in extended twisted Edwards coordinates
// Q = (x2+y2,y2-x2,2dt2) corresponding to (X2:Y2:Z2:T2) in extended twisted Edwards coordinates, where Z2=1
// Output: P = (Xfinal,Yfinal,Zfinal,Tfinal) in extended twisted Edwards coordinates
f2elm_t t1, t2, t3;
fp2add1271(P->z, P->z, t1); // t1 = 2Z1
fp2mul1271(P->t, Q->t2, P->t); // T = 2dT1*t2
fp2add1271(P->x, P->y, P->z); // Z = (X1+Y1)
fp2sub1271(P->y, P->x, t3); // t3 = (Y1-X1)
fp2sub1271(t1, P->t, t2); // t2 = theta
fp2add1271(t1, P->t, t1); // t1 = alpha
fp2mul1271(Q->xy, P->z, P->t); // T = (X1+Y1)(x2+y2)
fp2mul1271(Q->yx, t3, P->x); // X = (Y1-X1)(y2-x2)
fp2mul1271(t1, t2, P->z); // Zfinal = theta*alpha
fp2sub1271(P->t, P->x, t3); // t3 = beta
fp2add1271(P->t, P->x, P->t); // T = omega
fp2mul1271(t3, t2, P->x); // Xfinal = beta*theta
fp2mul1271(P->t, t1, P->y); // Yfinal = alpha*omega
fp2mul1271(P->t, t3, P->t); // Tfinal = beta*omega
}
static __inline void eccneg_extproj_precomp(point_extedwards_t P, point_extedwards_t Q)
{ // Point negation
// Input : point P in coordinates (X+Y,X-Y,2Z,2dT)
// Output: point Q = -P = (Y-X,X+Y,2Z,-2dT)
fp2copy1271(P->t, Q->t);
fp2copy1271(P->x, Q->y);
fp2copy1271(P->y, Q->x);
fp2copy1271(P->z, Q->z);
fp2neg1271(Q->x);
fp2neg1271(Q->y);
fp2neg1271(Q->t);
}
static __inline void eccneg_precomp(point_precomp_t P, point_precomp_t Q)
{ // Point negation
// Input : point P in coordinates (x+y,y-x,2dt)
// Output: point Q = -P = (y-x,x+y,-2dt)
fp2copy1271(P->t2, Q->t2);
fp2copy1271(P->xy, Q->yx);
fp2copy1271(P->yx, Q->xy);
fp2neg1271(Q->t2);
}
bool ecc_mul_double(digit_t* k, point_t Q, digit_t* l, point_t R)
{ // Double scalar multiplication R = k*G + l*Q, where the G is the generator. Uses DOUBLE_SCALAR_TABLE, which contains multiples of G, Phi(G), Psi(G) and Phi(Psi(G)).
// Inputs: point Q in affine coordinates,
// scalars "k" and "l" in [0, 2^256-1].
// Output: R = k*G + l*Q in affine coordinates (x,y).
// The function uses wNAF with interleaving.
// SECURITY NOTE: this function is intended for a non-constant-time operation such as signature verification.
unsigned int position;
int i, digits_k1[65] = {0}, digits_k2[65] = {0}, digits_k3[65] = {0}, digits_k4[65] = {0};
int digits_l1[65] = {0}, digits_l2[65] = {0}, digits_l3[65] = {0}, digits_l4[65] = {0};
point_precomp_t V;
point_extedwards_t Q1, Q2, Q3, Q4, T;
point_extedwards_t U, Q_table1[NPOINTS_DOUBLEMUL_WQ], Q_table2[NPOINTS_DOUBLEMUL_WQ], Q_table3[NPOINTS_DOUBLEMUL_WQ], Q_table4[NPOINTS_DOUBLEMUL_WQ];
f2elm_t t0, t1;
uint64_t k_scalars[4], l_scalars[4];
point_setup(Q, Q1); // Convert to representation (X,Y,1,Ta,Tb)
if (ecc_point_validate(Q1) == false) { // Check if point lies on the curve
return false;
}
// Computing endomorphisms over point Q
ecccopy(Q1, Q2);
ecc_phi(Q2);
ecccopy(Q1, Q3);
ecc_psi(Q3);
ecccopy(Q2, Q4);
ecc_psi(Q4);
decompose((uint64_t*)k, k_scalars); // Scalar decomposition
decompose((uint64_t*)l, l_scalars);
wNAF_recode(k_scalars[0], WP_DOUBLEBASE, digits_k1); // Scalar recoding
wNAF_recode(k_scalars[1], WP_DOUBLEBASE, digits_k2);
wNAF_recode(k_scalars[2], WP_DOUBLEBASE, digits_k3);
wNAF_recode(k_scalars[3], WP_DOUBLEBASE, digits_k4);
wNAF_recode(l_scalars[0], WQ_DOUBLEBASE, digits_l1);
wNAF_recode(l_scalars[1], WQ_DOUBLEBASE, digits_l2);
wNAF_recode(l_scalars[2], WQ_DOUBLEBASE, digits_l3);
wNAF_recode(l_scalars[3], WQ_DOUBLEBASE, digits_l4);
ecc_precomp_double(Q1, Q_table1, NPOINTS_DOUBLEMUL_WQ); // Precomputation
ecc_precomp_double(Q2, Q_table2, NPOINTS_DOUBLEMUL_WQ);
ecc_precomp_double(Q3, Q_table3, NPOINTS_DOUBLEMUL_WQ);
ecc_precomp_double(Q4, Q_table4, NPOINTS_DOUBLEMUL_WQ);
fp2zero1271(T->x); // Initialize T as the neutral point (0:1:1)
fp2zero1271(T->y); T->y[0][0] = 1;
fp2zero1271(T->z); T->z[0][0] = 1;
for (i = 64; i >= 0; i--)
{
eccdouble(T); // Double (X_T,Y_T,Z_T,T_T) = 2(X_T,Y_T,Z_T,T_T)
if (digits_l1[i] < 0) {
position = (-digits_l1[i])/2;
eccneg_extproj_precomp(Q_table1[position], U); // Load and negate U = (X_U,Y_U,Z_U,Td_U) <- -(X+Y,X-Y,2Z,2dT) from a point in the precomputed table
eccadd_core(T, U, T, t0, t1); // T = T+U = (X_T,Y_T,Z_T,T_T) = (X_T,Y_T,Z_T,T_T) + (X_U,Y_U,Z_U,Td_U)
fp2mul1271(t0, t1, T->t);
} else if (digits_l1[i] > 0) {
position = (digits_l1[i])/2; // Take U = (X_U,Y_U,Z_U,Td_U) <- (X+Y,X-Y,2Z,2dT) from a point in the precomputed table
eccadd_core(T, Q_table1[position], T, t0, t1); // T = T+U = (X_T,Y_T,Z_T,T_T) = (X_T,Y_T,Z_T,T_T) + (X_U,Y_U,Z_U,Td_U)
fp2mul1271(t0, t1, T->t);
}
if (digits_l2[i] < 0) {
position = (-digits_l2[i])/2;
eccneg_extproj_precomp(Q_table2[position], U);
eccadd_core(T, U, T, t0, t1);
fp2mul1271(t0, t1, T->t);
} else if (digits_l2[i] > 0) {
position = (digits_l2[i])/2;
eccadd_core(T, Q_table2[position], T, t0, t1);
fp2mul1271(t0, t1, T->t);
}
if (digits_l3[i] < 0) {
position = (-digits_l3[i])/2;
eccneg_extproj_precomp(Q_table3[position], U);
eccadd_core(T, U, T, t0, t1);
fp2mul1271(t0, t1, T->t);
} else if (digits_l3[i] > 0) {
position = (digits_l3[i])/2;
eccadd_core(T, Q_table3[position], T, t0, t1);
fp2mul1271(t0, t1, T->t);
}
if (digits_l4[i] < 0) {
position = (-digits_l4[i])/2;
eccneg_extproj_precomp(Q_table4[position], U);
eccadd_core(T, U, T, t0, t1);
fp2mul1271(t0, t1, T->t);
} else if (digits_l4[i] > 0) {
position = (digits_l4[i])/2;
eccadd_core(T, Q_table4[position], T, t0, t1);
fp2mul1271(t0, t1, T->t);
}
if (digits_k1[i] < 0) {
position = (-digits_k1[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[position], V); // Load and negate V = (X_V,Y_V,Z_V,Td_V) <- -(x+y,y-x,2dt) from a point in the precomputed table
eccmadd(V, T); // T = T+V = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_V,Y_V,Z_V,Td_V)
} else if (digits_k1[i] > 0) {
position = (digits_k1[i])/2; // Take V = (X_V,Y_V,Z_V,Td_V) <- (x+y,y-x,2dt) from a point in the precomputed table
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[position], T); // T = T+V = (X_T,Y_T,Z_T,Ta_T,Tb_T) = (X_T,Y_T,Z_T,Ta_T,Tb_T) + (X_V,Y_V,Z_V,Td_V)
}
if (digits_k2[i] < 0) {
position = (-digits_k2[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k2[i] > 0) {
position = (digits_k2[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[NPOINTS_DOUBLEMUL_WP+position], T);
}
if (digits_k3[i] < 0) {
position = (-digits_k3[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[2*NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k3[i] > 0) {
position = (digits_k3[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[2*NPOINTS_DOUBLEMUL_WP+position], T);
}
if (digits_k4[i] < 0) {
position = (-digits_k4[i])/2;
eccneg_precomp(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[3*NPOINTS_DOUBLEMUL_WP+position], V);
eccmadd(V, T);
} else if (digits_k4[i] > 0) {
position = (digits_k4[i])/2;
eccmadd(((point_precomp_t*)&DOUBLE_SCALAR_TABLE)[3*NPOINTS_DOUBLEMUL_WP+position], T);