-
Notifications
You must be signed in to change notification settings - Fork 714
/
Copy path5_rotation.cpp
201 lines (172 loc) · 6.81 KB
/
5_rotation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include "examples.h"
using namespace std;
using namespace seal;
/*
Both the BFV scheme (with BatchEncoder) as well as the CKKS scheme support native
vectorized computations on encrypted numbers. In addition to computing slot-wise,
it is possible to rotate the encrypted vectors cyclically.
*/
void example_rotation_bfv()
{
print_example_banner("Example: Rotation / Rotation in BFV");
EncryptionParameters parms(scheme_type::BFV);
size_t poly_modulus_degree = 8192;
parms.set_poly_modulus_degree(poly_modulus_degree);
parms.set_coeff_modulus(CoeffModulus::BFVDefault(poly_modulus_degree));
parms.set_plain_modulus(PlainModulus::Batching(poly_modulus_degree, 20));
auto context = SEALContext::Create(parms);
print_parameters(context);
cout << endl;
KeyGenerator keygen(context);
PublicKey public_key = keygen.public_key();
SecretKey secret_key = keygen.secret_key();
RelinKeys relin_keys = keygen.relin_keys();
Encryptor encryptor(context, public_key);
Evaluator evaluator(context);
Decryptor decryptor(context, secret_key);
BatchEncoder batch_encoder(context);
size_t slot_count = batch_encoder.slot_count();
size_t row_size = slot_count / 2;
cout << "Plaintext matrix row size: " << row_size << endl;
vector<uint64_t> pod_matrix(slot_count, 0ULL);
pod_matrix[0] = 0ULL;
pod_matrix[1] = 1ULL;
pod_matrix[2] = 2ULL;
pod_matrix[3] = 3ULL;
pod_matrix[row_size] = 4ULL;
pod_matrix[row_size + 1] = 5ULL;
pod_matrix[row_size + 2] = 6ULL;
pod_matrix[row_size + 3] = 7ULL;
cout << "Input plaintext matrix:" << endl;
print_matrix(pod_matrix, row_size);
/*
First we use BatchEncoder to encode the matrix into a plaintext. We encrypt
the plaintext as usual.
*/
Plaintext plain_matrix;
print_line(__LINE__);
cout << "Encode and encrypt." << endl;
batch_encoder.encode(pod_matrix, plain_matrix);
Ciphertext encrypted_matrix;
encryptor.encrypt(plain_matrix, encrypted_matrix);
cout << " + Noise budget in fresh encryption: "
<< decryptor.invariant_noise_budget(encrypted_matrix) << " bits" << endl;
cout << endl;
/*
Rotations require yet another type of special key called `Galois keys'. These
are easily obtained from the KeyGenerator.
*/
GaloisKeys gal_keys = keygen.galois_keys();
/*
Now rotate both matrix rows 3 steps to the left, decrypt, decode, and print.
*/
print_line(__LINE__);
cout << "Rotate rows 3 steps left." << endl;
evaluator.rotate_rows_inplace(encrypted_matrix, 3, gal_keys);
Plaintext plain_result;
cout << " + Noise budget after rotation: "
<< decryptor.invariant_noise_budget(encrypted_matrix) << " bits" << endl;
cout << " + Decrypt and decode ...... Correct." << endl;
decryptor.decrypt(encrypted_matrix, plain_result);
batch_encoder.decode(plain_result, pod_matrix);
print_matrix(pod_matrix, row_size);
/*
We can also rotate the columns, i.e., swap the rows.
*/
print_line(__LINE__);
cout << "Rotate columns." << endl;
evaluator.rotate_columns_inplace(encrypted_matrix, gal_keys);
cout << " + Noise budget after rotation: "
<< decryptor.invariant_noise_budget(encrypted_matrix) << " bits" << endl;
cout << " + Decrypt and decode ...... Correct." << endl;
decryptor.decrypt(encrypted_matrix, plain_result);
batch_encoder.decode(plain_result, pod_matrix);
print_matrix(pod_matrix, row_size);
/*
Finally, we rotate the rows 4 steps to the right, decrypt, decode, and print.
*/
print_line(__LINE__);
cout << "Rotate rows 4 steps right." << endl;
evaluator.rotate_rows_inplace(encrypted_matrix, -4, gal_keys);
cout << " + Noise budget after rotation: "
<< decryptor.invariant_noise_budget(encrypted_matrix) << " bits" << endl;
cout << " + Decrypt and decode ...... Correct." << endl;
decryptor.decrypt(encrypted_matrix, plain_result);
batch_encoder.decode(plain_result, pod_matrix);
print_matrix(pod_matrix, row_size);
/*
Note that rotations do not consume any noise budget. However, this is only
the case when the special prime is at least as large as the other primes. The
same holds for relinearization. Microsoft SEAL does not require that the
special prime is of any particular size, so ensuring this is the case is left
for the user to do.
*/
}
void example_rotation_ckks()
{
print_example_banner("Example: Rotation / Rotation in CKKS");
/*
Rotations in the CKKS scheme work very similarly to rotations in BFV.
*/
EncryptionParameters parms(scheme_type::CKKS);
size_t poly_modulus_degree = 8192;
parms.set_poly_modulus_degree(poly_modulus_degree);
parms.set_coeff_modulus(CoeffModulus::Create(
poly_modulus_degree, { 40, 40, 40, 40, 40 }));
auto context = SEALContext::Create(parms);
print_parameters(context);
cout << endl;
KeyGenerator keygen(context);
PublicKey public_key = keygen.public_key();
SecretKey secret_key = keygen.secret_key();
RelinKeys relin_keys = keygen.relin_keys();
GaloisKeys gal_keys = keygen.galois_keys();
Encryptor encryptor(context, public_key);
Evaluator evaluator(context);
Decryptor decryptor(context, secret_key);
CKKSEncoder ckks_encoder(context);
size_t slot_count = ckks_encoder.slot_count();
cout << "Number of slots: " << slot_count << endl;
vector<double> input;
input.reserve(slot_count);
double curr_point = 0;
double step_size = 1.0 / (static_cast<double>(slot_count) - 1);
for (size_t i = 0; i < slot_count; i++, curr_point += step_size)
{
input.push_back(curr_point);
}
cout << "Input vector:" << endl;
print_vector(input, 3, 7);
auto scale = pow(2.0, 50);
print_line(__LINE__);
cout << "Encode and encrypt." << endl;
Plaintext plain;
ckks_encoder.encode(input, scale, plain);
Ciphertext encrypted;
encryptor.encrypt(plain, encrypted);
Ciphertext rotated;
print_line(__LINE__);
cout << "Rotate 2 steps left." << endl;
evaluator.rotate_vector(encrypted, 2, gal_keys, rotated);
cout << " + Decrypt and decode ...... Correct." << endl;
decryptor.decrypt(rotated, plain);
vector<double> result;
ckks_encoder.decode(plain, result);
print_vector(result, 3, 7);
/*
With the CKKS scheme it is also possible to evaluate a complex conjugation on
a vector of encrypted complex numbers, using Evaluator::complex_conjugate.
This is in fact a kind of rotation, and requires also Galois keys.
*/
}
void example_rotation()
{
print_example_banner("Example: Rotation");
/*
Run all rotation examples.
*/
example_rotation_bfv();
example_rotation_ckks();
}