-
Notifications
You must be signed in to change notification settings - Fork 714
/
Copy pathntt.cpp
476 lines (414 loc) · 17.3 KB
/
ntt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
#include "seal/util/ntt.h"
#include "seal/util/uintarith.h"
#include "seal/util/uintarithsmallmod.h"
#include <algorithm>
#ifdef SEAL_USE_INTEL_HEXL
#include "seal/memorymanager.h"
#include "seal/util/iterator.h"
#include "seal/util/locks.h"
#include "seal/util/pointer.h"
#include <unordered_map>
#include "hexl/hexl.hpp"
#endif
using namespace std;
#ifdef SEAL_USE_INTEL_HEXL
namespace intel
{
namespace hexl
{
// Single threaded SEAL allocator adapter
template <>
struct NTT::AllocatorAdapter<seal::MemoryPoolHandle>
: public AllocatorInterface<NTT::AllocatorAdapter<seal::MemoryPoolHandle>>
{
AllocatorAdapter(seal::MemoryPoolHandle handle) : handle_(std::move(handle))
{}
~AllocatorAdapter()
{}
// interface implementations
void *allocate_impl(std::size_t bytes_count)
{
cache_.push_back(static_cast<seal::util::MemoryPool &>(handle_).get_for_byte_count(bytes_count));
return cache_.back().get();
}
void deallocate_impl(void *p, SEAL_MAYBE_UNUSED std::size_t n)
{
auto it = std::remove_if(
cache_.begin(), cache_.end(),
[p](const seal::util::Pointer<seal::seal_byte> &seal_pointer) { return p == seal_pointer.get(); });
#ifdef SEAL_DEBUG
if (it == cache_.end())
{
throw std::logic_error("Inconsistent single-threaded allocator cache");
}
#endif
cache_.erase(it, cache_.end());
}
private:
seal::MemoryPoolHandle handle_;
std::vector<seal::util::Pointer<seal::seal_byte>> cache_;
};
// Thread safe policy
struct SimpleThreadSafePolicy
{
SimpleThreadSafePolicy() : m_ptr(std::make_unique<std::mutex>())
{}
std::unique_lock<std::mutex> locker()
{
if (!m_ptr)
{
throw std::logic_error("accessing a moved object");
}
return std::unique_lock<std::mutex>{ *m_ptr };
};
private:
std::unique_ptr<std::mutex> m_ptr;
};
// Multithreaded SEAL allocator adapter
template <>
struct NTT::AllocatorAdapter<seal::MemoryPoolHandle, SimpleThreadSafePolicy>
: public AllocatorInterface<NTT::AllocatorAdapter<seal::MemoryPoolHandle, SimpleThreadSafePolicy>>
{
AllocatorAdapter(seal::MemoryPoolHandle handle, SimpleThreadSafePolicy &&policy)
: handle_(std::move(handle)), policy_(std::move(policy))
{}
~AllocatorAdapter()
{}
// interface implementations
void *allocate_impl(std::size_t bytes_count)
{
{
// to prevent inline optimization with deadlock
auto accessor = policy_.locker();
cache_.push_back(static_cast<seal::util::MemoryPool &>(handle_).get_for_byte_count(bytes_count));
return cache_.back().get();
}
}
void deallocate_impl(void *p, SEAL_MAYBE_UNUSED std::size_t n)
{
{
// to prevent inline optimization with deadlock
auto accessor = policy_.locker();
auto it = std::remove_if(
cache_.begin(), cache_.end(), [p](const seal::util::Pointer<seal::seal_byte> &seal_pointer) {
return p == seal_pointer.get();
});
#ifdef SEAL_DEBUG
if (it == cache_.end())
{
throw std::logic_error("Inconsistent multi-threaded allocator cache");
}
#endif
cache_.erase(it, cache_.end());
}
}
private:
seal::MemoryPoolHandle handle_;
SimpleThreadSafePolicy policy_;
std::vector<seal::util::Pointer<seal::seal_byte>> cache_;
};
} // namespace hexl
namespace seal_ext
{
struct HashPair
{
template <class T1, class T2>
std::size_t operator()(const std::pair<T1, T2> &p) const
{
auto hash1 = std::hash<T1>{}(std::get<0>(p));
auto hash2 = std::hash<T2>{}(std::get<1>(p));
return hash_combine(hash1, hash2);
}
static std::size_t hash_combine(std::size_t lhs, std::size_t rhs)
{
lhs ^= rhs + 0x9e3779b9 + (lhs << 6) + (lhs >> 2);
return lhs;
}
};
/**
Returns a HEXL NTT object corresponding to the given parameters.
@param[in] N The polynomial modulus degree
@param[in] modulus The modulus
@param[in] root The root of unity
*/
static intel::hexl::NTT &get_ntt(size_t N, uint64_t modulus, uint64_t root)
{
static unordered_map<pair<uint64_t, uint64_t>, hexl::NTT, HashPair> ntt_cache_;
static seal::util::ReaderWriterLocker ntt_cache_locker_;
pair<uint64_t, uint64_t> key{ N, modulus };
// Enable shared access to NTT already present
{
seal::util::ReaderLock reader_lock(ntt_cache_locker_.acquire_read());
auto ntt_it = ntt_cache_.find(key);
if (ntt_it != ntt_cache_.end())
{
return ntt_it->second;
}
}
// Deal with NTT not yet present
seal::util::WriterLock write_lock(ntt_cache_locker_.acquire_write());
// Check ntt_cache for value (may be added by another thread)
auto ntt_it = ntt_cache_.find(key);
if (ntt_it == ntt_cache_.end())
{
hexl::NTT ntt(N, modulus, root, seal::MemoryManager::GetPool(), hexl::SimpleThreadSafePolicy{});
ntt_it = ntt_cache_.emplace(move(key), move(ntt)).first;
}
return ntt_it->second;
}
/**
Computes the forward negacyclic NTT from the given parameters.
@param[in,out] operand The data on which to compute the NTT.
@param[in] N The polynomial modulus degree
@param[in] modulus The modulus
@param[in] root The root of unity
@param[in] input_mod_factor Bounds the input data to the range [0, input_mod_factor * modulus)
@param[in] output_mod_factor Bounds the output data to the range [0, output_mod_factor * modulus)
*/
static void compute_forward_ntt(
seal::util::CoeffIter operand, std::size_t N, std::uint64_t modulus, std::uint64_t root,
std::uint64_t input_mod_factor, std::uint64_t output_mod_factor)
{
get_ntt(N, modulus, root).ComputeForward(operand, operand, input_mod_factor, output_mod_factor);
}
/**
Computes the inverse negacyclic NTT from the given parameters.
@param[in,out] operand The data on which to compute the NTT.
@param[in] N The polynomial modulus degree
@param[in] modulus The modulus
@param[in] root The root of unity
@param[in] input_mod_factor Bounds the input data to the range [0, input_mod_factor * modulus)
@param[in] output_mod_factor Bounds the output data to the range [0, output_mod_factor * modulus)
*/
static void compute_inverse_ntt(
seal::util::CoeffIter operand, std::size_t N, std::uint64_t modulus, std::uint64_t root,
std::uint64_t input_mod_factor, std::uint64_t output_mod_factor)
{
get_ntt(N, modulus, root).ComputeInverse(operand, operand, input_mod_factor, output_mod_factor);
}
} // namespace seal_ext
} // namespace intel
#endif
namespace seal
{
namespace util
{
NTTTables::NTTTables(int coeff_count_power, const Modulus &modulus, MemoryPoolHandle pool) : pool_(move(pool))
{
#ifdef SEAL_DEBUG
if (!pool_)
{
throw invalid_argument("pool is uninitialized");
}
#endif
initialize(coeff_count_power, modulus);
}
void NTTTables::initialize(int coeff_count_power, const Modulus &modulus)
{
#ifdef SEAL_DEBUG
if ((coeff_count_power < get_power_of_two(SEAL_POLY_MOD_DEGREE_MIN)) ||
coeff_count_power > get_power_of_two(SEAL_POLY_MOD_DEGREE_MAX))
{
throw invalid_argument("coeff_count_power out of range");
}
#endif
coeff_count_power_ = coeff_count_power;
coeff_count_ = size_t(1) << coeff_count_power_;
modulus_ = modulus;
// We defer parameter checking to try_minimal_primitive_root(...)
if (!try_minimal_primitive_root(2 * coeff_count_, modulus_, root_))
{
throw invalid_argument("invalid modulus");
}
if (!try_invert_uint_mod(root_, modulus_, inv_root_))
{
throw invalid_argument("invalid modulus");
}
#ifdef SEAL_USE_INTEL_HEXL
// Pre-compute HEXL NTT object
intel::seal_ext::get_ntt(coeff_count_, modulus.value(), root_);
#endif
// Populate tables with powers of root in specific orders.
root_powers_ = allocate<MultiplyUIntModOperand>(coeff_count_, pool_);
MultiplyUIntModOperand root;
root.set(root_, modulus_);
uint64_t power = root_;
for (size_t i = 1; i < coeff_count_; i++)
{
root_powers_[reverse_bits(i, coeff_count_power_)].set(power, modulus_);
power = multiply_uint_mod(power, root, modulus_);
}
root_powers_[0].set(static_cast<uint64_t>(1), modulus_);
inv_root_powers_ = allocate<MultiplyUIntModOperand>(coeff_count_, pool_);
root.set(inv_root_, modulus_);
power = inv_root_;
for (size_t i = 1; i < coeff_count_; i++)
{
inv_root_powers_[reverse_bits(i - 1, coeff_count_power_) + 1].set(power, modulus_);
power = multiply_uint_mod(power, root, modulus_);
}
inv_root_powers_[0].set(static_cast<uint64_t>(1), modulus_);
// Compute n^(-1) modulo q.
uint64_t degree_uint = static_cast<uint64_t>(coeff_count_);
if (!try_invert_uint_mod(degree_uint, modulus_, inv_degree_modulo_.operand))
{
throw invalid_argument("invalid modulus");
}
inv_degree_modulo_.set_quotient(modulus_);
mod_arith_lazy_ = ModArithLazy(modulus_);
ntt_handler_ = NTTHandler(mod_arith_lazy_);
}
class NTTTablesCreateIter
{
public:
using value_type = NTTTables;
using pointer = void;
using reference = value_type;
using difference_type = ptrdiff_t;
// LegacyInputIterator allows reference to be equal to value_type so we can construct
// the return objects on the fly and return by value.
using iterator_category = input_iterator_tag;
// Require default constructor
NTTTablesCreateIter()
{}
// Other constructors
NTTTablesCreateIter(int coeff_count_power, vector<Modulus> modulus, MemoryPoolHandle pool)
: coeff_count_power_(coeff_count_power), modulus_(modulus), pool_(move(pool))
{}
// Require copy and move constructors and assignments
NTTTablesCreateIter(const NTTTablesCreateIter ©) = default;
NTTTablesCreateIter(NTTTablesCreateIter &&source) = default;
NTTTablesCreateIter &operator=(const NTTTablesCreateIter &assign) = default;
NTTTablesCreateIter &operator=(NTTTablesCreateIter &&assign) = default;
// Dereferencing creates NTTTables and returns by value
inline value_type operator*() const
{
return { coeff_count_power_, modulus_[index_], pool_ };
}
// Pre-increment
inline NTTTablesCreateIter &operator++() noexcept
{
index_++;
return *this;
}
// Post-increment
inline NTTTablesCreateIter operator++(int) noexcept
{
NTTTablesCreateIter result(*this);
index_++;
return result;
}
// Must be EqualityComparable
inline bool operator==(const NTTTablesCreateIter &compare) const noexcept
{
return (compare.index_ == index_) && (coeff_count_power_ == compare.coeff_count_power_);
}
inline bool operator!=(const NTTTablesCreateIter &compare) const noexcept
{
return !operator==(compare);
}
// Arrow operator must be defined
value_type operator->() const
{
return **this;
}
private:
size_t index_ = 0;
int coeff_count_power_ = 0;
vector<Modulus> modulus_;
MemoryPoolHandle pool_;
};
void CreateNTTTables(
int coeff_count_power, const vector<Modulus> &modulus, Pointer<NTTTables> &tables, MemoryPoolHandle pool)
{
if (!pool)
{
throw invalid_argument("pool is uninitialized");
}
if (!modulus.size())
{
throw invalid_argument("invalid modulus");
}
// coeff_count_power and modulus will be validated by "allocate"
NTTTablesCreateIter iter(coeff_count_power, modulus, pool);
tables = allocate(iter, modulus.size(), pool);
}
void ntt_negacyclic_harvey_lazy(CoeffIter operand, const NTTTables &tables)
{
#ifdef SEAL_USE_INTEL_HEXL
size_t N = size_t(1) << tables.coeff_count_power();
uint64_t p = tables.modulus().value();
uint64_t root = tables.get_root();
intel::seal_ext::compute_forward_ntt(operand, N, p, root, 4, 4);
#else
tables.ntt_handler().transform_to_rev(
operand.ptr(), tables.coeff_count_power(), tables.get_from_root_powers());
#endif
}
void ntt_negacyclic_harvey(CoeffIter operand, const NTTTables &tables)
{
#ifdef SEAL_USE_INTEL_HEXL
size_t N = size_t(1) << tables.coeff_count_power();
uint64_t p = tables.modulus().value();
uint64_t root = tables.get_root();
intel::seal_ext::compute_forward_ntt(operand, N, p, root, 4, 1);
#else
ntt_negacyclic_harvey_lazy(operand, tables);
// Finally maybe we need to reduce every coefficient modulo q, but we
// know that they are in the range [0, 4q).
// Since word size is controlled this is fast.
std::uint64_t modulus = tables.modulus().value();
std::uint64_t two_times_modulus = modulus * 2;
std::size_t n = std::size_t(1) << tables.coeff_count_power();
SEAL_ITERATE(operand, n, [&](auto &I) {
// Note: I must be passed to the lambda by reference.
if (I >= two_times_modulus)
{
I -= two_times_modulus;
}
if (I >= modulus)
{
I -= modulus;
}
});
#endif
}
void inverse_ntt_negacyclic_harvey_lazy(CoeffIter operand, const NTTTables &tables)
{
#ifdef SEAL_USE_INTEL_HEXL
size_t N = size_t(1) << tables.coeff_count_power();
uint64_t p = tables.modulus().value();
uint64_t root = tables.get_root();
intel::seal_ext::compute_inverse_ntt(operand, N, p, root, 2, 2);
#else
MultiplyUIntModOperand inv_degree_modulo = tables.inv_degree_modulo();
tables.ntt_handler().transform_from_rev(
operand.ptr(), tables.coeff_count_power(), tables.get_from_inv_root_powers(), &inv_degree_modulo);
#endif
}
void inverse_ntt_negacyclic_harvey(CoeffIter operand, const NTTTables &tables)
{
#ifdef SEAL_USE_INTEL_HEXL
size_t N = size_t(1) << tables.coeff_count_power();
uint64_t p = tables.modulus().value();
uint64_t root = tables.get_root();
intel::seal_ext::compute_inverse_ntt(operand, N, p, root, 2, 1);
#else
inverse_ntt_negacyclic_harvey_lazy(operand, tables);
std::uint64_t modulus = tables.modulus().value();
std::size_t n = std::size_t(1) << tables.coeff_count_power();
// Final adjustments; compute a[j] = a[j] * n^{-1} mod q.
// We incorporated the final adjustment in the butterfly. Only need to reduce here.
SEAL_ITERATE(operand, n, [&](auto &I) {
// Note: I must be passed to the lambda by reference.
if (I >= modulus)
{
I -= modulus;
}
});
#endif
}
} // namespace util
} // namespace seal