-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathoptimizer.py
163 lines (141 loc) · 6.04 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
from functools import partial
from torch import optim as optim
try:
from apex.optimizers import FusedAdam, FusedLAMB
except:
FusedAdam = None
FusedLAMB = None
print("To use FusedLAMB or FusedAdam, please install apex.")
def build_optimizer(config, model, simmim=False, is_pretrain=False):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
if simmim:
if is_pretrain:
parameters = get_pretrain_param_groups(model, skip, skip_keywords)
else:
depths = config.MODEL.SWIN.DEPTHS if config.MODEL.TYPE == 'swin' else config.MODEL.SWINV2.DEPTHS
num_layers = sum(depths)
get_layer_func = partial(get_swin_layer, num_layers=num_layers + 2, depths=depths)
scales = list(config.TRAIN.LAYER_DECAY ** i for i in reversed(range(num_layers + 2)))
parameters = get_finetune_param_groups(model, config.TRAIN.BASE_LR, config.TRAIN.WEIGHT_DECAY, get_layer_func, scales, skip, skip_keywords)
else:
parameters = set_weight_decay(model, skip, skip_keywords)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'fused_adam':
optimizer = FusedAdam(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'fused_lamb':
optimizer = FusedLAMB(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
return optimizer
def set_weight_decay(model, skip_list=(), skip_keywords=()):
has_decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
no_decay.append(param)
# print(f"{name} has no weight decay")
else:
has_decay.append(param)
return [{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}]
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin
def get_pretrain_param_groups(model, skip_list=(), skip_keywords=()):
has_decay = []
no_decay = []
has_decay_name = []
no_decay_name = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
no_decay.append(param)
no_decay_name.append(name)
else:
has_decay.append(param)
has_decay_name.append(name)
return [{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}]
def get_swin_layer(name, num_layers, depths):
if name in ("mask_token"):
return 0
elif name.startswith("patch_embed"):
return 0
elif name.startswith("layers"):
layer_id = int(name.split('.')[1])
block_id = name.split('.')[3]
if block_id == 'reduction' or block_id == 'norm':
return sum(depths[:layer_id + 1])
layer_id = sum(depths[:layer_id]) + int(block_id)
return layer_id + 1
else:
return num_layers - 1
def get_finetune_param_groups(model, lr, weight_decay, get_layer_func, scales, skip_list=(), skip_keywords=()):
parameter_group_names = {}
parameter_group_vars = {}
for name, param in model.named_parameters():
if not param.requires_grad:
continue
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
if get_layer_func is not None:
layer_id = get_layer_func(name)
group_name = "layer_%d_%s" % (layer_id, group_name)
else:
layer_id = None
if group_name not in parameter_group_names:
if scales is not None:
scale = scales[layer_id]
else:
scale = 1.
parameter_group_names[group_name] = {
"group_name": group_name,
"weight_decay": this_weight_decay,
"params": [],
"lr": lr * scale,
"lr_scale": scale,
}
parameter_group_vars[group_name] = {
"group_name": group_name,
"weight_decay": this_weight_decay,
"params": [],
"lr": lr * scale,
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
return list(parameter_group_vars.values())