-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodule.cpp
732 lines (599 loc) · 27.9 KB
/
module.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
// License from live555's testRTSPClient:
/**********
This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.)
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**********/
/* Basic Python wrapper around live555's APIs for loading RTSP
* streams */
#include <Python.h>
#include "liveMedia.hh"
#include "BasicUsageEnvironment.hh"
#define MAX_CLIENTS 1000
// Forward function definitions:
// RTSP 'response handlers':
void continueAfterDESCRIBE(RTSPClient* rtspClient, int resultCode, char* resultString);
void continueAfterSETUP(RTSPClient* rtspClient, int resultCode, char* resultString);
void continueAfterPLAY(RTSPClient* rtspClient, int resultCode, char* resultString);
// Other event handler functions:
void subsessionAfterPlaying(void* clientData); // called when a stream's subsession (e.g., audio or video substream) ends
void subsessionByeHandler(void* clientData); // called when a RTCP "BYE" is received for a subsession
void streamTimerHandler(void* clientData);
// called at the end of a stream's expected duration (if the stream has not already signaled its end using a RTCP "BYE")
// Used to iterate through each stream's 'subsessions', setting up each one:
void setupNextSubsession(RTSPClient* rtspClient);
// Used to shut down and close a stream (including its "RTSPClient" object):
void shutdownStream(RTSPClient* rtspClient, int exitCode = 1);
#define RTSP_CLIENT_VERBOSITY_LEVEL 0 // by default, print verbose output from each "RTSPClient"
// If you don't want to see debugging output for each received frame, then comment out the following line:
//#define DEBUG_PRINT_EACH_RECEIVED_FRAME 1
static PyObject *error;
static TaskScheduler* scheduler;
static UsageEnvironment* env;
static PyThreadState *threadState;
// Define a class to hold per-stream state that we maintain throughout each stream's lifetime:
class StreamClientState {
public:
StreamClientState();
virtual ~StreamClientState();
public:
Boolean useTCP;
MediaSubsessionIterator* iter;
MediaSession* session;
MediaSubsession* subsession;
PyObject *frameCallback;
PyObject* shutdownCallback;
TaskToken streamTimerTask;
double duration;
int m_handle;
};
static RTSPClient* clientList[MAX_CLIENTS];
int last_handle = -1;
// If you're streaming just a single stream (i.e., just from a single URL, once), then you can define and use just a single
// "StreamClientState" structure, as a global variable in your application. However, because - in this demo application - we're
// showing how to play multiple streams, concurrently, we can't do that. Instead, we have to have a separate "StreamClientState"
// structure for each "RTSPClient". To do this, we subclass "RTSPClient", and add a "StreamClientState" field to the subclass:
class ourRTSPClient: public RTSPClient {
public:
static ourRTSPClient* createNew(UsageEnvironment& env,
char const* rtspURL,
PyObject* frameCallback,
PyObject* shutdownCallback,
int clientHandle,
int verbosityLevel = 0,
portNumBits tunnelOverHTTPPortNum = 0);
protected:
ourRTSPClient(UsageEnvironment& env, char const* rtspURL, PyObject* frameCallback, PyObject* shutdownCallback,
int verbosityLevel, portNumBits tunnelOverHTTPPortNum, int clientHandle);
// called only by createNew();
virtual ~ourRTSPClient();
public:
StreamClientState scs;
};
// A function that outputs a string that identifies each stream (for debugging output). Modify this if you wish:
UsageEnvironment& operator<<(UsageEnvironment& env, const RTSPClient& rtspClient) {
ourRTSPClient& ourClient = (ourRTSPClient&) rtspClient;
return env << "[handle:\"" << ourClient.scs.m_handle << "\"]: ";
}
// A function that outputs a string that identifies each subsession (for debugging output). Modify this if you wish:
UsageEnvironment& operator<<(UsageEnvironment& env, const MediaSubsession& subsession) {
return env << subsession.mediumName() << "/" << subsession.codecName();
}
void usage(UsageEnvironment& env, char const* progName) {
env << "Usage: " << progName << " <rtsp-url-1> ... <rtsp-url-N>\n";
env << "\t(where each <rtsp-url-i> is a \"rtsp://\" URL)\n";
}
// Define a data sink (a subclass of "MediaSink") to receive the data for each subsession (i.e., each audio or video 'substream').
// In practice, this might be a class (or a chain of classes) that decodes and then renders the incoming audio or video.
// Or it might be a "FileSink", for outputting the received data into a file (as is done by the "openRTSP" application).
// In this example code, however, we define a simple 'dummy' sink that receives incoming data, but does nothing with it.
class DummySink: public MediaSink {
public:
static DummySink* createNew(UsageEnvironment& env,
MediaSubsession& subsession, // identifies the kind of data that's being received
PyObject *frameCallback,
char const* streamId = NULL, // identifies the stream itself (optional)
RTSPClient *rtspClient = NULL);
private:
DummySink(UsageEnvironment& env, MediaSubsession& subsession, PyObject *frameCallback, char const* streamId, RTSPClient *rtspClient);
// called only by "createNew()"
virtual ~DummySink();
static void afterGettingFrame(void* clientData, unsigned frameSize,
unsigned numTruncatedBytes,
struct timeval presentationTime,
unsigned durationInMicroseconds);
void afterGettingFrame(unsigned frameSize, unsigned numTruncatedBytes,
struct timeval presentationTime, unsigned durationInMicroseconds);
private:
// redefined virtual functions:
virtual Boolean continuePlaying();
private:
PyObject *frameCallback;
u_int8_t* fReceiveBuffer;
RTSPClient *fRTSPClient;
MediaSubsession& fSubsession;
char* fStreamId;
int first;
};
// Implementation of the RTSP 'response handlers':
void continueAfterDESCRIBE(RTSPClient* rtspClient, int resultCode, char* resultString) {
do {
UsageEnvironment& env = rtspClient->envir(); // alias
StreamClientState& scs = ((ourRTSPClient*)rtspClient)->scs; // alias
if (resultCode != 0) {
env << *rtspClient << "Failed to get a SDP description: " << resultString << "\n";
delete[] resultString;
break;
}
char* const sdpDescription = resultString;
//env << *rtspClient << "Got a SDP description:\n" << sdpDescription << "\n";
// Create a media session object from this SDP description:
scs.session = MediaSession::createNew(env, sdpDescription);
delete[] sdpDescription; // because we don't need it anymore
if (scs.session == NULL) {
env << *rtspClient << "Failed to create a MediaSession object from the SDP description: " << env.getResultMsg() << "\n";
break;
} else if (!scs.session->hasSubsessions()) {
env << *rtspClient << "This session has no media subsessions (i.e., no \"m=\" lines)\n";
break;
}
// Then, create and set up our data source objects for the session. We do this by iterating over the session's 'subsessions',
// calling "MediaSubsession::initiate()", and then sending a RTSP "SETUP" command, on each one.
// (Each 'subsession' will have its own data source.)
scs.iter = new MediaSubsessionIterator(*scs.session);
setupNextSubsession(rtspClient);
return;
// nocommit why have a while loop that runs only once?
// there is no continue?
} while (0);
// An unrecoverable error occurred with this stream.
shutdownStream(rtspClient);
}
void setupNextSubsession(RTSPClient* rtspClient) {
UsageEnvironment& env = rtspClient->envir(); // alias
StreamClientState& scs = ((ourRTSPClient*)rtspClient)->scs; // alias
scs.subsession = scs.iter->next();
if (scs.subsession != NULL) {
// Only tap the video stream (the metadata stream never
// seems to send anything):
//if (strcmp(scs.subsession->codecName(), "H264")) {
//setupNextSubsession(rtspClient);
//return;
//}
if (!scs.subsession->initiate()) {
env << *rtspClient << "Failed to initiate the \"" << *scs.subsession << "\" subsession: " << env.getResultMsg() << "\n";
setupNextSubsession(rtspClient); // give up on this subsession; go to the next one
} else {
env << *rtspClient << "Initiated the \"" << *scs.subsession
<< "\" subsession (client ports " << scs.subsession->clientPortNum() << "-" << scs.subsession->clientPortNum()+1 << ")\n";
// Continue setting up this subsession, by sending a RTSP "SETUP" command:
rtspClient->sendSetupCommand(*scs.subsession, continueAfterSETUP, False, scs.useTCP);
}
return;
}
// We've finished setting up all of the subsessions. Now, send a RTSP "PLAY" command to start the streaming:
if (scs.session->absStartTime() != NULL) {
// Special case: The stream is indexed by 'absolute' time, so send an appropriate "PLAY" command:
rtspClient->sendPlayCommand(*scs.session, continueAfterPLAY, scs.session->absStartTime(), scs.session->absEndTime());
} else {
scs.duration = scs.session->playEndTime() - scs.session->playStartTime();
rtspClient->sendPlayCommand(*scs.session, continueAfterPLAY);
}
}
void continueAfterSETUP(RTSPClient* rtspClient, int resultCode, char* resultString) {
do {
UsageEnvironment& env = rtspClient->envir(); // alias
StreamClientState& scs = ((ourRTSPClient*)rtspClient)->scs; // alias
if (resultCode != 0) {
env << *rtspClient << "Failed to set up the \"" << *scs.subsession << "\" subsession: " << resultString << "\n";
break;
}
env << *rtspClient << "Set up the \"" << *scs.subsession
<< "\" subsession (client ports " << scs.subsession->clientPortNum() << "-" << scs.subsession->clientPortNum()+1 << ")\n";
// Having successfully setup the subsession, create a data sink for it, and call "startPlaying()" on it.
// (This will prepare the data sink to receive data; the actual flow of data from the client won't start happening until later,
// after we've sent a RTSP "PLAY" command.)
scs.subsession->sink = DummySink::createNew(env, *scs.subsession, scs.frameCallback, rtspClient->url(), rtspClient);
// perhaps use your own custom "MediaSink" subclass instead
if (scs.subsession->sink == NULL) {
env << *rtspClient << "Failed to create a data sink for the \"" << *scs.subsession
<< "\" subsession: " << env.getResultMsg() << "\n";
break;
}
env << *rtspClient << "Created a data sink for the \"" << *scs.subsession << "\" subsession\n";
scs.subsession->miscPtr = rtspClient; // a hack to let subsession handle functions get the "RTSPClient" from the subsession
scs.subsession->sink->startPlaying(*(scs.subsession->readSource()),
subsessionAfterPlaying, scs.subsession);
// Also set a handler to be called if a RTCP "BYE" arrives for this subsession:
if (scs.subsession->rtcpInstance() != NULL) {
scs.subsession->rtcpInstance()->setByeHandler(subsessionByeHandler, scs.subsession);
}
} while (0);
delete[] resultString;
// Set up the next subsession, if any:
setupNextSubsession(rtspClient);
}
void continueAfterPLAY(RTSPClient* rtspClient, int resultCode, char* resultString) {
Boolean success = False;
do {
UsageEnvironment& env = rtspClient->envir(); // alias
StreamClientState& scs = ((ourRTSPClient*)rtspClient)->scs; // alias
if (resultCode != 0) {
env << *rtspClient << "Failed to start playing session: " << resultString << "\n";
break;
}
// Set a timer to be handled at the end of the stream's expected duration (if the stream does not already signal its end
// using a RTCP "BYE"). This is optional. If, instead, you want to keep the stream active - e.g., so you can later
// 'seek' back within it and do another RTSP "PLAY" - then you can omit this code.
// (Alternatively, if you don't want to receive the entire stream, you could set this timer for some shorter value.)
if (scs.duration > 0) {
unsigned const delaySlop = 2; // number of seconds extra to delay, after the stream's expected duration. (This is optional.)
scs.duration += delaySlop;
unsigned uSecsToDelay = (unsigned)(scs.duration*1000000);
scs.streamTimerTask = env.taskScheduler().scheduleDelayedTask(uSecsToDelay, (TaskFunc*)streamTimerHandler, rtspClient);
}
env << *rtspClient << "Started playing session";
if (scs.duration > 0) {
env << " (for up to " << scs.duration << " seconds)";
}
env << "...\n";
success = True;
} while (0);
delete[] resultString;
if (!success) {
// An unrecoverable error occurred with this stream.
shutdownStream(rtspClient);
}
}
// Implementation of the other event handlers:
void subsessionAfterPlaying(void* clientData) {
MediaSubsession* subsession = (MediaSubsession*)clientData;
RTSPClient* rtspClient = (RTSPClient*)(subsession->miscPtr);
// Begin by closing this subsession's stream:
Medium::close(subsession->sink);
subsession->sink = NULL;
// Next, check whether *all* subsessions' streams have now been closed:
MediaSession& session = subsession->parentSession();
MediaSubsessionIterator iter(session);
while ((subsession = iter.next()) != NULL) {
if (subsession->sink != NULL) return; // this subsession is still active
}
// All subsessions' streams have now been closed, so shutdown the client:
shutdownStream(rtspClient);
}
void subsessionByeHandler(void* clientData) {
MediaSubsession* subsession = (MediaSubsession*)clientData;
RTSPClient* rtspClient = (RTSPClient*)subsession->miscPtr;
UsageEnvironment& env = rtspClient->envir(); // alias
env << *rtspClient << "Received RTCP \"BYE\" on \"" << *subsession << "\" subsession\n";
// Now act as if the subsession had closed:
subsessionAfterPlaying(subsession);
}
void streamTimerHandler(void* clientData) {
ourRTSPClient* rtspClient = (ourRTSPClient*)clientData;
StreamClientState& scs = rtspClient->scs; // alias
scs.streamTimerTask = NULL;
// Shut down the stream:
shutdownStream(rtspClient);
}
void shutdownStream(RTSPClient* rtspClient, int exitCode) {
// fprintf(stderr, "shutting down, getting environment\n");
UsageEnvironment& env = rtspClient->envir(); // alias
// fprintf(stderr, "shutting down, getting client state\n");
StreamClientState& scs = ((ourRTSPClient*)rtspClient)->scs; // alias
// fprintf (stderr, "Got scs, m_handle: %d\n", scs.m_handle);
env << *rtspClient << "in close stream\n";
// First, check whether any subsessions have still to be closed:
if (scs.session != NULL) {
Boolean someSubsessionsWereActive = False;
MediaSubsessionIterator iter(*scs.session);
MediaSubsession* subsession;
while ((subsession = iter.next()) != NULL) {
if (subsession->sink != NULL) {
Medium::close(subsession->sink);
subsession->sink = NULL;
if (subsession->rtcpInstance() != NULL) {
// nocommit
//subsession->rtcpInstance()->setByeHandler(NULL, NULL); // in case the server sends a RTCP "BYE" while handling "TEARDOWN"
}
someSubsessionsWereActive = True;
}
}
if (someSubsessionsWereActive) {
// Send a RTSP "TEARDOWN" command, to tell the server to shutdown the stream.
// Don't bother handling the response to the
// "TEARDOWN".
rtspClient->sendTeardownCommand(*scs.session, NULL);
}
}
// Put these into local variables before they get reclaimed by Medium::close()
int handle = scs.m_handle;
PyObject* shutdownCallback = scs.shutdownCallback;
Medium::close(rtspClient);
// Note that this will also cause this stream's "StreamClientState" structure to get reclaimed.
clientList[handle] = NULL;
/* This callback will work at some point in the future. Currently, though this callback triggers: https://bugs.python.org/issue23571
Which generates a SystemError on stopEventLoop. This kills the interpreter, which is a wholly bad outcome.
THEREFORE, I am leaving the code here, despite its lack of goodness for now.
if (shutdownCallback != NULL) {
// Note that the GIL lock is required because this method is frequently called from the delayed babysitter thread.
PyGILState_STATE gstate;
fprintf(stderr, "doing shutdowncallback\n");
gstate = PyGILState_Ensure();
PyEval_CallFunction(shutdownCallback, "");
PyGILState_Release(gstate);
}
*/
}
// Implementation of "ourRTSPClient":
ourRTSPClient* ourRTSPClient::createNew(UsageEnvironment& env, char const* rtspURL, PyObject* frameCallback, PyObject* shutdownCallback,
int clientHandle,
int verbosityLevel, portNumBits tunnelOverHTTPPortNum) {
ourRTSPClient* result = new ourRTSPClient(env, rtspURL, frameCallback, shutdownCallback, verbosityLevel, tunnelOverHTTPPortNum, clientHandle);
return result;
}
ourRTSPClient::ourRTSPClient(UsageEnvironment& env, char const* rtspURL, PyObject* frameCallback, PyObject* shutdownCallback,
int verbosityLevel, portNumBits tunnelOverHTTPPortNum, int clientHandle)
: RTSPClient(env, rtspURL, verbosityLevel, "", tunnelOverHTTPPortNum, -1) {
Py_INCREF(frameCallback);
scs.frameCallback = frameCallback;
scs.shutdownCallback = shutdownCallback;
scs.m_handle = clientHandle;
}
ourRTSPClient::~ourRTSPClient() {
}
// Implementation of "StreamClientState":
StreamClientState::StreamClientState()
: iter(NULL), session(NULL), subsession(NULL), streamTimerTask(NULL), duration(0.0) {
}
StreamClientState::~StreamClientState() {
delete iter;
if (session != NULL) {
// We also need to delete "session", and unschedule "streamTimerTask" (if set)
UsageEnvironment& env = session->envir(); // alias
env.taskScheduler().unscheduleDelayedTask(streamTimerTask);
Medium::close(session);
}
}
// Implementation of "DummySink":
// Define the size of the buffer that we'll use:
#define DUMMY_SINK_RECEIVE_BUFFER_SIZE 1024*1024
DummySink* DummySink::createNew(UsageEnvironment& env, MediaSubsession& subsession, PyObject *frameCallback, char const* streamId, RTSPClient *rtspClient) {
return new DummySink(env, subsession, frameCallback, streamId, rtspClient);
}
DummySink::DummySink(UsageEnvironment& env, MediaSubsession& subsession, PyObject *frameCallbackIn, char const* streamId, RTSPClient *rtspClient)
: MediaSink(env),
fSubsession(subsession) {
fStreamId = strDup(streamId);
fReceiveBuffer = new u_int8_t[DUMMY_SINK_RECEIVE_BUFFER_SIZE];
frameCallback = frameCallbackIn;
fRTSPClient = rtspClient;
first = 1;
}
DummySink::~DummySink() {
delete[] fReceiveBuffer;
delete[] fStreamId;
Py_DECREF(frameCallback);
}
void DummySink::afterGettingFrame(void* clientData, unsigned frameSize, unsigned numTruncatedBytes,
struct timeval presentationTime, unsigned durationInMicroseconds) {
DummySink* sink = (DummySink*)clientData;
sink->afterGettingFrame(frameSize, numTruncatedBytes, presentationTime, durationInMicroseconds);
}
void DummySink::afterGettingFrame(unsigned frameSize, unsigned numTruncatedBytes,
struct timeval presentationTime, unsigned durationInUS) {
PyEval_RestoreThread(threadState);
if (first == 1) {
// NOTE: only necessary for H264 I think?
unsigned numSPropRecords;
SPropRecord* sPropRecords = parseSPropParameterSets(fSubsession.fmtp_spropparametersets(), numSPropRecords);
for(unsigned i=0;i<numSPropRecords;i++) {
PyObject *result = PyEval_CallFunction(frameCallback, "sy#iii", fSubsession.codecName(), sPropRecords[i].sPropBytes, sPropRecords[i].sPropLength, -1, -1, -1);
if (result == NULL) {
fprintf(stderr, "Exception in RTSP callback:\n");
PyErr_PrintEx(1);
fSource->stopGettingFrames();
env->taskScheduler().scheduleDelayedTask(0, (TaskFunc*)shutdownStream, fRTSPClient);
PyEval_SaveThread();
return;
//break;
}
}
delete[] sPropRecords;
first = 0;
}
// TODO: can we somehow avoid ... making a full copy here:
//printf("%d bytes\n", frameSize);fflush(stdout);
PyObject *result = PyEval_CallFunction(frameCallback, "sy#llI", fSubsession.codecName(), fReceiveBuffer, frameSize, presentationTime.tv_sec, presentationTime.tv_usec, durationInUS);
if (result == NULL) {
fprintf(stderr, "Exception in RTSP callback:");
PyErr_PrintEx(1);
fSource->stopGettingFrames();
env->taskScheduler().scheduleDelayedTask(0, (TaskFunc*)shutdownStream, fRTSPClient);
PyEval_SaveThread();
return;
}
PyEval_SaveThread();
// We've just received a frame of data. (Optionally) print out information about it:
#ifdef DEBUG_PRINT_EACH_RECEIVED_FRAME
if (fStreamId != NULL) envir() << "Stream \"" << fStreamId << "\"; ";
envir() << fSubsession.mediumName() << "/" << fSubsession.codecName() << ":\tReceived " << frameSize << " bytes";
if (numTruncatedBytes > 0) envir() << " (with " << numTruncatedBytes << " bytes truncated)";
char uSecsStr[6+1]; // used to output the 'microseconds' part of the presentation time
sprintf(uSecsStr, "%06u", (unsigned)presentationTime.tv_usec);
envir() << ".\tPresentation time: " << (int)presentationTime.tv_sec << "." << uSecsStr;
if (fSubsession.rtpSource() != NULL && !fSubsession.rtpSource()->hasBeenSynchronizedUsingRTCP()) {
envir() << "!"; // mark the debugging output to indicate that this presentation time is not RTCP-synchronized
}
#ifdef DEBUG_PRINT_NPT
envir() << "\tNPT: " << fSubsession.getNormalPlayTime(presentationTime);
#endif
envir() << "\n";
#endif
// Then continue, to request the next frame of data:
continuePlaying();
}
Boolean DummySink::continuePlaying() {
if (fSource == NULL) return False; // sanity check (should not happen)
// Request the next frame of data from our input source. "afterGettingFrame()" will get called later, when it arrives:
fSource->getNextFrame(fReceiveBuffer, DUMMY_SINK_RECEIVE_BUFFER_SIZE,
afterGettingFrame, this,
onSourceClosure, this);
return True;
}
static PyObject *
startRTSP(PyObject *self, PyObject *args)
{
const char *rtspURL;
PyObject *frameCallback;
PyObject *shutdownCallback;
int useTCP = 1;
if (!PyArg_ParseTuple(args, "sOO|i", &rtspURL, &frameCallback, &shutdownCallback, &useTCP)) {
return NULL;
}
if (!PyCallable_Check(frameCallback)) {
PyErr_SetString(error, "frame callback must be a callable");
return NULL;
}
if (!PyCallable_Check(shutdownCallback)) {
PyErr_SetString(error, "shutdown callback must be a callable");
return NULL;
}
// find the right index -- this has a race condition.
int clientHandle = -1;
int i;
for (i=last_handle + 1; i<MAX_CLIENTS ; i++) {
if (clientList[i] == NULL) {
// fprintf(stderr, "setting handle to %d\n", i);
clientHandle = i;
clientList[clientHandle] = (RTSPClient*) -1;
break;
}
}
// If we've looped through reset the list and restart
if (clientHandle == -1) {
for (i=0; i<MAX_CLIENTS ; i++) {
if (clientList[i] == NULL) {
// fprintf(stderr, "setting handle to %d\n", i);
clientHandle = i;
clientList[clientHandle] = (RTSPClient*) -1;
break;
}
}
}
if (clientHandle == -1) {
PyErr_SetString(error, "failed to create RTSPClient: Max connections exceeded");
return NULL;
}
// Begin by creating a "RTSPClient" object. Note that there is a separate "RTSPClient" object for each stream that we wish
// to receive (even if more than stream uses the same "rtsp://" URL).
ourRTSPClient* rtspClient = ourRTSPClient::createNew(*env, rtspURL, frameCallback, shutdownCallback, clientHandle, RTSP_CLIENT_VERBOSITY_LEVEL);
if (rtspClient == NULL) {
PyErr_SetString(error, "failed to create RTSPClient");
return NULL;
}
clientList[clientHandle] = rtspClient;
last_handle = clientHandle;
rtspClient->scs.useTCP = useTCP != 0;
// Next, send a RTSP "DESCRIBE" command, to get a SDP description for the stream.
// Note that this command - like all RTSP commands - is sent asynchronously; we do not block, waiting for a response.
// Instead, the following function call returns immediately, and we handle the RTSP response later, from within the event loop:
rtspClient->sendDescribeCommand(continueAfterDESCRIBE);
Py_INCREF(Py_None);
// fprintf(stderr, "returning handle %d and scs.m_handle is %d\n", clientHandle, rtspClient->scs.m_handle);
return Py_BuildValue("i", clientHandle);
}
static PyObject *
stopRTSP(PyObject *self, PyObject *args)
{
int rtspClientHandle = 1;
if (!PyArg_ParseTuple(args, "i", &rtspClientHandle)) {
PyErr_SetString(error, "Invalid arguments");
return NULL;
}
char buffer[50];
if (rtspClientHandle >= MAX_CLIENTS || rtspClientHandle < 0) {
sprintf(buffer, "Invalid handle argument %d", rtspClientHandle);
PyErr_SetString(error, buffer);
return NULL;
}
if (clientList[rtspClientHandle] == NULL) {
sprintf(buffer, "Invalid null handle %d", rtspClientHandle);
PyErr_SetString(error, buffer);
return NULL;
}
if (clientList[rtspClientHandle] == (RTSPClient*) -1) {
sprintf(buffer, "Invalid handle %d", rtspClientHandle);
PyErr_SetString(error, buffer);
return NULL;
}
RTSPClient* client;
client = clientList[rtspClientHandle];
if (client == NULL) {
sprintf(buffer, "Invalid null handle %d", rtspClientHandle);
PyErr_SetString(error, buffer);
return NULL;
}
clientList[rtspClientHandle] = NULL;
shutdownStream(client);
Py_INCREF(Py_None);
return Py_None;
}
static char stopEventLoopFlag = 0;
static PyObject *
runEventLoop(PyObject *self, PyObject *args)
{
stopEventLoopFlag = 0;
// All subsequent activity takes place within the event loop:
threadState = PyEval_SaveThread();
env->taskScheduler().doEventLoop(&stopEventLoopFlag);
PyEval_RestoreThread(threadState);
Py_INCREF(Py_None);
return Py_None;
}
static PyObject *
stopEventLoop(PyObject *self, PyObject *args)
{
stopEventLoopFlag = 1;
Py_INCREF(Py_None);
return Py_None;
}
static PyMethodDef moduleMethods[] = {
{"startRTSP", startRTSP, METH_VARARGS, "Start loading frames from the provided RTSP url. First argument is the URL string (should be rtsp://username:password@host/...; second argument is a callback function called once per received frame; third agument is the callback function to be called if/when the stream is shut down; fourth is False if UDP transport should be used and True if TCP transport should be used."},
{"stopRTSP", stopRTSP, METH_VARARGS, "Stop loading frames from the provided RTSP url. First argument is the int of the RTSP handler. This is the same int that was returned by startRTSP"},
{"runEventLoop", runEventLoop, METH_NOARGS, "Run the event loop."},
{"stopEventLoop", stopEventLoop, METH_NOARGS, "Stop the event loop, which will cause runEventLoop (in another thread) to stop and return."},
{NULL, NULL, 0, NULL} /* Sentinel */
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"live555", /* name of module */
NULL, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
moduleMethods
};
PyMODINIT_FUNC
PyInit_live555(void)
{
PyObject *m;
m = PyModule_Create(&module);
if (m == NULL) {
return NULL;
}
error = PyErr_NewException("live555.error", NULL, NULL);
Py_INCREF(error);
PyModule_AddObject(m, "error", error);
// Begin by setting up our usage environment:
scheduler = BasicTaskScheduler::createNew();
env = BasicUsageEnvironment::createNew(*scheduler);
return m;
}