-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathtrain_base_model.py
146 lines (115 loc) · 4.63 KB
/
train_base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# encoding: utf-8
"""
Adapted and extended by:
@author: mikwieczorek
"""
import argparse
import os
from collections import defaultdict
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from pytorch_lightning.utilities import AttributeDict, rank_zero_only
from torch import tensor
from tqdm import tqdm
from config import cfg
from modelling.bases import ModelBase
from utils.misc import run_main
class CTLModel(ModelBase):
def __init__(self, cfg=None, **kwargs):
super().__init__(cfg, **kwargs)
self.losses_names = [
"query_xent",
"query_triplet",
"query_center",
"centroid_triplet",
]
self.losses_dict = {n: [] for n in self.losses_names}
def training_step(self, batch, batch_idx, optimizer_idx=None):
opt, opt_center = self.optimizers(use_pl_optimizer=True)
if self.hparams.SOLVER.USE_WARMUP_LR:
if self.trainer.current_epoch < self.hparams.SOLVER.WARMUP_EPOCHS:
lr_scale = min(
1.0,
float(self.trainer.current_epoch + 1)
/ float(self.hparams.SOLVER.WARMUP_EPOCHS),
)
for pg in opt.param_groups:
pg["lr"] = lr_scale * self.hparams.SOLVER.BASE_LR
opt_center.zero_grad()
opt.zero_grad()
x, class_labels, camid, isReal = batch # batch is a tuple
# Get backbone features
_, features = self.backbone(x)
# query
contrastive_loss_query, dist_ap, dist_an = self.contrastive_loss(
features, class_labels, mask=isReal
)
contrastive_loss_query = (
contrastive_loss_query * self.hparams.SOLVER.QUERY_CONTRASTIVE_WEIGHT
)
center_loss = self.hparams.SOLVER.CENTER_LOSS_WEIGHT * self.center_loss(
features, class_labels
)
bn_features = self.bn(features)
cls_score = self.fc_query(bn_features)
xent_query = self.xent(cls_score, class_labels)
xent_query = xent_query * self.hparams.SOLVER.QUERY_XENT_WEIGHT
total_loss = center_loss + xent_query + contrastive_loss_query
self.manual_backward(total_loss, optimizer=opt)
opt.step()
for param in self.center_loss.parameters():
param.grad.data *= 1.0 / self.hparams.SOLVER.CENTER_LOSS_WEIGHT
opt_center.step()
losses = [xent_query, contrastive_loss_query, center_loss]
losses = [item.detach() for item in losses]
losses = list(map(float, losses))
for name, loss_val in zip(self.losses_names, losses):
self.losses_dict[name].append(loss_val)
log_data = {
"step_dist_ap": float(dist_ap.mean()),
"step_dist_an": float(dist_an.mean()),
}
return {"loss": total_loss, "other": log_data}
def training_epoch_end(self, outputs):
if hasattr(self.trainer.train_dataloader.sampler, "set_epoch"):
self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch + 1)
lr = self.lr_scheduler.get_last_lr()[0]
loss = torch.stack([x.pop("loss") for x in outputs]).mean().cpu().detach()
epoch_dist_ap = np.mean([x["other"].pop("step_dist_ap") for x in outputs])
epoch_dist_an = np.mean([x["other"].pop("step_dist_an") for x in outputs])
del outputs
log_data = {
"epoch_train_loss": float(loss),
"epoch_dist_ap": epoch_dist_ap,
"epoch_dist_an": epoch_dist_an,
"lr": lr,
}
if hasattr(self, "losses_dict"):
for name, loss_val in self.losses_dict.items():
val_tmp = np.mean(loss_val)
log_data.update({name: val_tmp})
self.losses_dict[name] = [] ## Zeroing values after a completed epoch
self.trainer.logger.log_metrics(log_data, step=self.trainer.current_epoch)
self.trainer.accelerator_backend.barrier()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CLT Model Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
logger_save_dir = f"{Path(__file__).stem}"
run_main(cfg, CTLModel, logger_save_dir)