-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExercise_16.f90
74 lines (69 loc) · 2.39 KB
/
Exercise_16.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
! Program : Exercise_16
! Author : FortranFan
! Reference : https://en.wikipedia.org/wiki/Gauss%27s_continued_fraction#cite_note-8
!
! Description:
! An example implementation that illustrates how to employ a
! RECURIVE function in Fortran to compute the tangent of x using
! Lambert's continued fraction dating back to 1768 which gives
! tan(x) = x/(1-x**2/(3-x**2/(5-x**2/(7-x**2/..))))
!
module kinds_m
! Returns the kind value of a real data type with decimal precision of at least P digits
integer, parameter :: WP = selected_real_kind( p=12 ) ! Select suitable precision
end module kinds_m
module trig_m
! importing WP from kinds module
use kinds_m, only: WP
! Named constants
real(WP), parameter :: ONE = 1.0_wp
real(WP), parameter :: TWO = 2.0_wp
real(WP), parameter :: PI = 3.14159265358979323846264338327950288_wp
real(WP), parameter :: DEG_TO_RAD = PI/180.0_wp
real(WP), parameter :: TOL = 1e-3_wp !<-- Suitable tolerance for continued fraction series
real(WP), parameter :: UPPER_LIMIT = ONE/TOL
contains
elemental function tand(degx) result(tanx)
! Calculate tangent of x in degrees using Lambert's formula
! Argument list
real(WP), intent(in) :: degx ! x in degrees
! Function result
real(WP) :: tanx
! Local variables
real(WP) :: x
x = degx * DEG_TO_RAD
tanx = x / ( ONE + CalcFracLambert(x, n = 1))
return
end function tand
pure recursive function CalcFracLambert(x, n) result(Frac)
! Argument list
real(WP), intent(in) :: x ! x in radians
integer, intent(in) :: n
! Function result
real(WP) :: Frac
! Local variables
real(WP) :: Term
Term = TWO*n + ONE
if ( Term > UPPER_LIMIT ) then
Frac = - x**2 / Term
else
Frac = - x**2 / ( Term + CalcFracLambert(x, n+1) )
end if
return
end function CalcfracLambert
end module trig_m
program CalcTanx
! importing relevant modules
use kinds_m, only: WP
use trig_m, only: tand, DEG_TO_RAD
! declaring and initializing variables
real(WP) :: degx, tanx
degx = 40.0_wp
! Calcuating tan value
tanx = tand(degx)
! printing results
print *, "x(degrees): ", degx
print *, "tan(x) using Lambert's formula: ", tanx
print *, "% diff with intrinsic tan: ", (tanx/tan(degx*DEG_TO_RAD)-1.0_wp)*100.0_wp
stop
end program CalcTanx