-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathmain_batch.py
executable file
·93 lines (79 loc) · 3.5 KB
/
main_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
'''
Perform Graph-based Depth Correction (GDC)
in batch over KITTI object dataset.
Author: Yurong You
Date: Feb 2020
'''
import argparse
import os
import os.path as osp
import time
from multiprocessing import Pool, Process, Queue
import numpy as np
from tqdm.auto import tqdm
from data_utils.kitti_util import Calibration
from gdc import GDC
parser = argparse.ArgumentParser(description='GDC in batch')
parser.add_argument('--input_path', type=str,
help='path to predicted depthmap')
parser.add_argument('--calib_path', type=str,
help='path to calibration files')
parser.add_argument('--gt_depthmap_path', type=str,
help='path to groundtruth depthmap')
parser.add_argument('--output_path', type=str)
parser.add_argument('--split_file', type=str, required=True,
help='indices of scene to be corrected')
parser.add_argument('--k', type=int, default=10, help="k for KNN")
parser.add_argument('--recon_tol', type=float, default=5e-4, help="recon_tol for GDC")
parser.add_argument('--method', type=str, default='cg',
help='cg or gmres')
parser.add_argument('--disable_subsample', dest="subsample", action='store_false',
help='whether subsampling points')
parser.add_argument('--consider_range', type=float, nargs='+', default=[-0.1, 3.0],
help='consider_range')
parser.add_argument('--threads', type=int, default=4)
def GDC_and_save(func, save_path, *args, **kwds):
corrected = func(*args, **kwds)
np.save(save_path, corrected.astype(np.float32))
def main(args):
if not osp.isdir(args.output_path):
os.makedirs(args.output_path)
with open(args.split_file) as f:
idx_list = [int(x.strip()) for x in f.readlines() if len(x.strip()) > 0]
if args.threads <= 1:
for idx in tqdm(idx_list):
save_path = osp.join(args.output_path, "{:06d}".format(idx))
if osp.exists(save_path + '.npy'):
continue
predict = np.load(
osp.join(args.input_path, "{:06d}.npy".format(idx)))
gt = np.load(osp.join(args.gt_depthmap_path,
"{:06d}.npy".format(idx)))
calib = Calibration(
osp.join(args.calib_path, "{:06d}.txt".format(idx)))
GDC_and_save(GDC, save_path, predict, gt, calib,
W_tol=3e-5, recon_tol=args.recon_tol,
k=args.k, method=args.method, subsample=args.subsample)
else:
# multiprocessing
pool = Pool(args.threads)
res = []
pbar = tqdm(total=len(idx_list))
def update(*a):
pbar.update()
for idx in idx_list:
predict = np.load(osp.join(args.input_path, "{:06d}.npy".format(idx)))
gt = np.load(osp.join(args.gt_depthmap_path, "{:06d}.npy".format(idx)))
calib = Calibration(osp.join(args.calib_path, "{:06d}.txt".format(idx)))
save_path = osp.join(args.output_path, "{:06d}".format(idx))
res.append((idx, pool.apply_async(
GDC_and_save, args=(GDC, save_path, predict, gt, calib),
kwds={'W_tol': 1e-5, 'recon_tol': args.recon_tol, 'k': args.k,
'method': args.method, 'subsample': args.subsample, 'consider_range': args.consider_range}, callback=update)))
pool.close()
pool.join()
pbar.clear(nolock=False)
pbar.close()
if __name__ == '__main__':
args = parser.parse_args()
main(args)