English | 中文
YOLOv8 是Ultralytics的YOLO的最新版本。作为一种前沿、最先进(SOTA)的模型,YOLOv8在之前版本的成功基础上引入了新功能和改进,以提高性能、灵活性和效率。YOLOv8支持多领域的视觉AI任务,包括检测、分割、姿态估计、跟踪和分类。这种多功能性使用户能够利用YOLOv8的功能应对多种应用和领域的需求。
为了适配版面分析任务,我们对YOLOv8做了部分改进:
- 输入分辨率扩大为 800 * 800;
- 使用P3-P6检测头;
- 删除不必要的数据增强(如Mosaic、Mixup和HSV等增强方法)。
mindspore | ascend driver | firmware | cann toolkit/kernel |
---|---|---|---|
2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1 |
根据我们的实验,在公开基准数据集(PublayNet)上的-评估结果如下:
在采用图模式的ascend 910*上实验结果,mindspore版本为2.3.1
注意:
- 如需在其他环境配置重现训练结果,请确保全局批量大小与原配置文件保持一致。
- 模型都是从头开始训练的,无需任何预训练。关于训练和测试数据集的详细介绍,请参考[PubLayNet数据集准备](#3.1.2 PubLayNet数据集准备)章节。
- YOLOv8的MindIR导出时的输入Shape均为(1, 3, 800, 800)。
环境安装教程请参考MindOCR的 installation instruction.
PubLayNet是一个用于文档布局分析的数据集。它包含研究论文和文章的图像,以及页面中各种元素的注释,如这些研究论文图像中的“文本”、“列表”、“图形”等。该数据集是通过自动匹配PubMed Central上公开的100多万篇PDF文章的XML表示和内容而获得的。
PubLayNet的训练及验证数据集可以从 这里 下载。
python tools/dataset_converters/convert.py \
--dataset_name publaynet \
--image_dir publaynet/ \
--output_path publaynet/
下载完成后,可以使用上述MindOCR提供的脚本将数据转换为YOLOv8输入格式的数据类型。
除了数据集的设置,请同时重点关注以下变量的配置:system.distribute
, system.val_while_train
, common.batch_size
, train.ckpt_save_dir
, train.dataset.dataset_path
, eval.ckpt_load_path
, eval.dataset.dataset_path
, eval.loader.batch_size
。说明如下:
system:
distribute: &distribute True # 分布式训练为True,单卡训练为False
amp_level: 'O0'
amp_level_infer: "O0"
seed: 42
val_while_train: False # 边训练边验证
drop_overflow_update: False
common:
...
batch_size: 16 # 训练批大小
annotations_path: publaynet/val.json
...
train:
ckpt_save_dir: './tmp_layout' # 训练结果(包括checkpoint、每个epoch的性能和曲线图)保存目录
dataset_sink_mode: False
dataset:
type: PublayNetDataset
dataset_path: publaynet/train.txt # 训练数据集路径
...
eval:
ckpt_load_path: './tmp_layout/best.ckpt' # checkpoint文件路径
dataset_sink_mode: False
dataset:
type: PublayNetDataset
dataset_path: publaynet/val.txt # 验证数据集路径
...
loader:
shuffle: False
batch_size: 16 # 验证批大小
...
注意:
- 由于全局批大小 (batch_size x num_devices) 对结果复现很重要,因此当NPU卡数发生变化时,调整
batch_size
以保持全局批大小不变,或根据新的全局批大小线性调整学习率。
- 分布式训练
使用预定义的训练配置可以轻松重现报告的结果。对于在多个昇腾910设备上的分布式训练,请将配置参数distribute
修改为True,并运行:
# 在多个 Ascend 设备上进行分布式训练
mpirun --allow-run-as-root -n 4 python tools/train.py --config configs/layout/yolov8/yolov8n.yaml
- 单卡训练
如果要在没有分布式训练的情况下在较小的数据集上训练或微调模型,请将配置参数distribute
修改为False 并运行:
# CPU/Ascend 设备上的单卡训练
python tools/train.py --config configs/layout/yolov8/yolov8n.yaml
训练结果(包括checkpoint、每个epoch的性能和曲线图)将被保存在yaml配置文件的ckpt_save_dir
参数配置的目录下,默认为./tmp_layout
。
若要评估已训练模型的准确性,可以使用eval.py
。请在yaml配置文件的eval
部分将参数ckpt_load_path
设置为模型checkpoint的文件路径,设置distribute
为False,然后运行:
python tools/eval.py --config configs/layout/yolov8/yolov8n.yaml
请参考MindOCR 推理教程,基于MindSpore Lite在Ascend 310上进行模型的推理,包括以下步骤:
1. 模型导出
请先下载已导出的MindIR文件,或者参考模型导出教程,使用以下命令将训练完成的ckpt导出为MindIR文件:
python tools/export.py --model_name_or_config configs/layout/yolov8/yolov8n.yaml --data_shape 800 800 --local_ckpt_path /path/to/local_ckpt.ckpt
其中,data_shape
是导出MindIR时的模型输入Shape的height和width,下载链接中MindIR对应的shape值见注释。yaml中的distribute
需要被设置为False。
2. 环境搭建
请参考环境安装教程,配置MindSpore Lite推理运行环境。
3. 模型转换
请参考模型转换教程,使用converter_lite
工具对MindIR模型进行离线转换。
4. 执行推理
假设在模型转换后得到output.mindir文件,在deploy/py_infer
目录下使用以下命令进行推理:
python infer.py \
--input_images_dir=/your_path_to/val \
--layout_model_path=your_path_to/output.mindir \
--layout_model_name_or_config=../../configs/layout/yolov8/yolov8n.yaml \
--res_save_dir=results_dir
可以使用以下代码将推理结果进行可视化:
from matplotlib import pyplot as plt
import matplotlib.patches as patches
from PIL import Image
img_path = 'publaynet/val/PMC4958442_00003.jpg'
img = Image.open(img_path)
fig, ax = plt.subplots()
ax.imshow(img)
category_dict = {1: 'text', 2: 'title', 3: 'list', 4: 'table', 5: 'figure'}
color_dict = {1: 'r', 2: 'b', 3: 'g', 4: 'c', 5: 'm'}
results = [{"category_id": 1, "bbox": [308.25, 559.25, 240.5, 81.5], "score": 0.98438},
{"category_id": 1, "bbox": [50.5, 672.75, 240.5, 70.5], "score": 0.9834},
{"category_id": 3, "bbox": [322.875, 349.0, 226.25, 203.0], "score": 0.97949},
{"category_id": 1, "bbox": [308.25, 638.75, 240.5, 70.5], "score": 0.97949},
{"category_id": 1, "bbox": [50.688, 605.0, 240.125, 70.0], "score": 0.97949},
{"category_id": 1, "bbox": [50.5, 423.125, 240.0, 183.75], "score": 0.97754},
{"category_id": 1, "bbox": [308.25, 707.0, 240.5, 36.0], "score": 0.97461},
{"category_id": 1, "bbox": [308.875, 294.0, 240.25, 47.5], "score": 0.97461},
{"category_id": 1, "bbox": [308.625, 230.5, 239.75, 43.75], "score": 0.96875},
{"category_id": 4, "bbox": [51.875, 100.5, 240.25, 273.5], "score": 0.96875},
{"category_id": 5, "bbox": [308.625, 74.375, 237.75, 149.25], "score": 0.9668},
{"category_id": 1, "bbox": [50.688, 70.625, 240.125, 22.0], "score": 0.94141},
{"category_id": 2, "bbox": [50.562, 403.625, 67.375, 12.75], "score": 0.92578},
{"category_id": 1, "bbox": [51.312, 374.625, 171.875, 10.75], "score": 0.7666},
{"category_id": 4, "bbox": [53.625, 80.25, 493.75, 144.0], "score": 0.00247},
{"category_id": 1, "bbox": [51.812, 144.625, 27.875, 12.25], "score": 0.00241},
{"category_id": 1, "bbox": [52.625, 159.125, 14.0, 11.75], "score": 0.00184},
{"category_id": 4, "bbox": [52.0, 207.5, 497.0, 164.5], "score": 0.00173},
{"category_id": 3, "bbox": [326.25, 349.75, 222.5, 64.5], "score": 0.00133},
{"category_id": 2, "bbox": [52.25, 144.938, 27.25, 12.125], "score": 0.00107}]
for item in results:
category_id = item['category_id']
bbox = item['bbox']
score = item['score']
if score < 0.8:
continue
left, bottom, w, h = bbox
rect = patches.Rectangle((left, bottom), w, h, linewidth=1, edgecolor=color_dict[category_id], facecolor='none')
ax.add_patch(rect)
ax.text(left, bottom, '{} {}'.format(category_dict[category_id], score), fontsize=8, color='w',
bbox=dict(facecolor=color_dict[category_id], edgecolor='none', boxstyle='round'))
plt.imshow(img)
plt.axis('off')
plt.show()
可视化结果如下: