forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFindValidMatrixGivenRowAndColumnSums.cpp
80 lines (79 loc) · 2.48 KB
/
FindValidMatrixGivenRowAndColumnSums.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
// Source : https://leetcode.com/problems/find-valid-matrix-given-row-and-column-sums/
// Author : Sudesh Chaudhary
// Date : 2020-10-03
/*******************************************************************************
* You are given two arrays rowSum and colSum of non-negative integers where rowSum[i] is the sum
* of the elements in the ith row and colSum[j] is the sum of the elements of the jth column of a 2D matrix.
* In other words, you do not know the elements of the matrix, but you do know the sums of each row and column.
*
* Find any matrix of non-negative integers of size rowSum.length x colSum.length that satisfies the rowSum and
* colSum requirements.
*
* Return a 2D array representing any matrix that fulfills the requirements. It's guaranteed that at
* least one matrix that fulfills the requirements exists.
* Example 1:
*
* Input: rowSum = [3,8], colSum = [4,7]
* Output: [[3,0],
* [1,7]]
* Explanation:
* 0th row: 3 + 0 = 0 == rowSum[0]
* 1st row: 1 + 7 = 8 == rowSum[1]
* 0th column: 3 + 1 = 4 == colSum[0]
* 1st column: 0 + 7 = 7 == colSum[1]
* The row and column sums match, and all matrix elements are non-negative.
* Another possible matrix is: [[1,2],
* [3,5]]
* Example 2:
*
* Input: rowSum = [5,7,10], colSum = [8,6,8]
* Output: [[0,5,0],
* [6,1,0],
* [2,0,8]]
* Example 3:
*
* Input: rowSum = [14,9], colSum = [6,9,8]
* Output: [[0,9,5],
* [6,0,3]]
* Example 4:
*
* Input: rowSum = [1,0], colSum = [1]
* Output: [[1],
* [0]]
* Example 5:
*
* Input: rowSum = [0], colSum = [0]
* Output: [[0]]
*********************************************************************************/
class Solution {
public:
vector<vector<int>> restoreMatrix(vector<int>& row, vector<int>& col) {
int n = row.size();
int m = col.size();
if(n==0 ||m==0)
return {};
vector<vector<int>> res(n,vector<int>(m,0));
priority_queue<pair<int,int>> p,q;
for(int i=0;i<n;i++){
p.push({row[i],i});
}
for(int j=0;j<m;j++){
q.push({col[j],j});
}
while(!q.empty() && !p.empty()){
auto a = p.top();
auto b = q.top();
p.pop();
q.pop();
int t = min(a.first,b.first);
res[a.second][b.second]=t;
a.first-=t;
b.first-=t;
if(a.first>0)
p.push(a);
if(b.first>0)
q.push(b);
}
return res;
}
};