-
Notifications
You must be signed in to change notification settings - Fork 926
/
Copy pathmain.py
229 lines (178 loc) · 6.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright © 2023-2024 Apple Inc.
import argparse
import time
from functools import partial
from pathlib import Path
import dataset
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
import vae
from mlx.utils import tree_flatten
from PIL import Image
def grid_image_from_batch(image_batch, num_rows):
"""
Generate a grid image from a batch of images.
Assumes input has shape (B, H, W, C).
"""
B, H, W, _ = image_batch.shape
num_cols = B // num_rows
# Calculate the size of the output grid image
grid_height = num_rows * H
grid_width = num_cols * W
# Normalize and convert to the desired data type
image_batch = np.array(image_batch * 255).astype(np.uint8)
# Reshape the batch of images into a 2D grid
grid_image = image_batch.reshape(num_rows, num_cols, H, W, -1)
grid_image = grid_image.swapaxes(1, 2)
grid_image = grid_image.reshape(grid_height, grid_width, -1)
# Convert the grid to a PIL Image
return Image.fromarray(grid_image.squeeze())
def loss_fn(model, X):
X_recon, mu, logvar = model(X)
# Reconstruction loss
recon_loss = nn.losses.mse_loss(X_recon, X, reduction="sum")
# KL divergence between encoder distribution and standard normal:
kl_div = -0.5 * mx.sum(1 + logvar - mu.square() - logvar.exp())
# Total loss
return recon_loss + kl_div
def reconstruct(model, batch, out_file):
# Reconstruct a single batch only
images = mx.array(batch["image"])
images_recon = model(images)[0]
paired_images = mx.stack([images, images_recon]).swapaxes(0, 1).flatten(0, 1)
grid_image = grid_image_from_batch(paired_images, num_rows=16)
grid_image.save(out_file)
def generate(
model,
out_file,
num_samples=128,
):
# Sample from the latent distribution:
z = mx.random.normal([num_samples, model.num_latent_dims])
# Decode the latent vectors to images:
images = model.decode(z)
# Save all images in a single file
grid_image = grid_image_from_batch(images, num_rows=8)
grid_image.save(out_file)
def main(args):
# Load the data
img_size = (64, 64, 1)
train_iter, test_iter = dataset.mnist(
batch_size=args.batch_size, img_size=img_size[:2]
)
save_dir = Path(args.save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
# Load the model
model = vae.CVAE(args.latent_dims, img_size, args.max_filters)
mx.eval(model.parameters())
num_params = sum(x.size for _, x in tree_flatten(model.trainable_parameters()))
print("Number of trainable params: {:0.04f} M".format(num_params / 1e6))
optimizer = optim.AdamW(learning_rate=args.lr)
# Batches for reconstruction
train_batch = next(train_iter)
test_batch = next(test_iter)
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(X):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, X)
optimizer.update(model, grads)
return loss
for e in range(1, args.epochs + 1):
# Reset iterators and stats at the beginning of each epoch
train_iter.reset()
model.train()
# Train one epoch
tic = time.perf_counter()
loss_acc = 0.0
throughput_acc = 0.0
# Iterate over training batches
for batch_count, batch in enumerate(train_iter):
X = mx.array(batch["image"])
throughput_tic = time.perf_counter()
# Forward pass + backward pass + update
loss = step(X)
# Evaluate updated model parameters
mx.eval(state)
throughput_toc = time.perf_counter()
throughput_acc += X.shape[0] / (throughput_toc - throughput_tic)
loss_acc += loss.item()
if batch_count > 0 and (batch_count % 10 == 0):
print(
" | ".join(
[
f"Epoch {e:4d}",
f"Loss {(loss_acc / batch_count):10.2f}",
f"Throughput {(throughput_acc / batch_count):8.2f} im/s",
f"Batch {batch_count:5d}",
]
),
end="\r",
)
toc = time.perf_counter()
print(
" | ".join(
[
f"Epoch {e:4d}",
f"Loss {(loss_acc / batch_count):10.2f}",
f"Throughput {(throughput_acc / batch_count):8.2f} im/s",
f"Time {toc - tic:8.1f} (s)",
]
)
)
model.eval()
# Reconstruct a batch of training and test images
reconstruct(model, train_batch, save_dir / f"train_{e:03d}.png")
reconstruct(model, test_batch, save_dir / f"test_{e:03d}.png")
# Generate images
generate(model, save_dir / f"generated_{e:03d}.png")
model.save_weights(str(save_dir / "weights.npz"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--cpu",
action="store_true",
help="Use CPU instead of GPU acceleration",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--batch-size", type=int, default=128, help="Batch size for training"
)
parser.add_argument(
"--max-filters",
type=int,
default=64,
help="Maximum number of filters in the convolutional layers",
)
parser.add_argument(
"--epochs", type=int, default=50, help="Number of training epochs"
)
parser.add_argument("--lr", type=float, default=1e-3, help="Learning rate")
parser.add_argument(
"--latent-dims",
type=int,
default=8,
help="Number of latent dimensions (positive integer)",
)
parser.add_argument(
"--save-dir",
type=str,
default="models/",
help="Path to save the model and reconstructed images.",
)
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
np.random.seed(args.seed)
mx.random.seed(args.seed)
print("Options: ")
print(f" Device: {'GPU' if not args.cpu else 'CPU'}")
print(f" Seed: {args.seed}")
print(f" Batch size: {args.batch_size}")
print(f" Max number of filters: {args.max_filters}")
print(f" Number of epochs: {args.epochs}")
print(f" Learning rate: {args.lr}")
print(f" Number of latent dimensions: {args.latent_dims}")
main(args)