-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathiitii.h
649 lines (574 loc) · 26.1 KB
/
iitii.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*
Implicit Interval Tree with Interpolation Index (iitii)
This file provides two template classes,
iit: implicit interval tree, a reimplementation of cgranges by Heng Li
iitii: iit + interpolation index, experimental extension to speed up queries on very large
datasets
Both classes take the folllowing four template parameters:
Pos : numeric position type (e.g. uint32_t, double)
Item : arbitrary type of the items to be indexed
get_beg : a function (const Item& -> Pos) which accesses the interval begin position of item
get_end : " " " end "
For good performance, get_beg and get_end should just access members of Item (cache-local fetch).
Example:
using intpair = std::pair<int,int>;
int p_get_beg(const intpair& p) { return p.first; }
int p_get_end(const intpair& p) { return p.second; }
using p_iit = iit<int, intpair, p_get_beg, p_get_end>; // first arg is position type
p_iit::builder br;
br.add(intpair(12,34));
br.add(intpair(0,23));
br.add(intpair(34,56));
p_iit db = br.build();
// alternative: p_iit db = p_iit::builder(container.begin(), container.end()).build();
std::vector<const intpair*> results = db.overlap(22, 25);
// alternative: db.overlap(22, 25, results);
Building iitii works the same way, except build() takes a size_t argument giving the number of
model domains.
This header file has other helper template classes that allow most code to be shared between iit
and iitii (without burdening the former with baggage from the latter -- important for fair
comparative benchmarking). The template structure has gotten a little out of hand, which always
seems to happen.
*/
#include <vector>
#include <limits>
#include <algorithm>
#include <cmath>
#include <assert.h>
// Base template for the internal representation of a node within an implicit interval tree
// User should not care about this; subclass instantiations may add more members for more-
// exotically augmented classes of implicit interval trees
template<typename Pos, typename Item, Pos get_beg(const Item&), Pos get_end(const Item&)>
struct iit_node_base {
static const Pos npos = std::numeric_limits<Pos>::max(); // reserved constant for invalid Pos
Item item;
Pos inside_max_end; // max end of this & subtree (as in textbook augmented interval tree)
iit_node_base(const Item& item_)
: item(item_)
, inside_max_end(get_end(item))
{}
inline Pos beg() const {
return get_beg(item);
}
inline Pos end() const {
return get_end(item);
}
bool operator<(const iit_node_base<Pos, Item, get_beg, get_end>& rhs) const {
auto lbeg = beg(), rbeg = rhs.beg();
if (lbeg == rbeg) {
return end() < rhs.end();
}
return lbeg < rbeg;
}
};
// Base template for an implicit interval tree, with internal repr
// Node<Pos, Item, ...> : iit_node_base<Pos, Item, ...>
// User should not deal with this directly, but instantiate sub-templates iit or iiitii (below)
template<typename Pos, typename Item, class Node, template<class> class NodeArray>
class iit_base {
protected:
// aliases to help keep the Pos, Rank, and Level concepts straight
typedef std::size_t Rank; // rank of a node, its index in the sorted array (or beyond, if
// imaginary)
typedef std::size_t Level; // level in tree
static const Rank nrank = std::numeric_limits<Rank>::max(); // invalid Rank
NodeArray<Node> nodes; // array of Nodes sorted by beginning position
size_t full_size; // size of the full binary tree containing the nodes; liable to be
// as large as 2*nodes.size()-1, including imaginary nodes.
Rank root;
Level root_level; // = K in cgranges
// compute a node's level, the # of 1 bits below the lowest 0 bit
inline Level level(Rank node) const {
assert(node < full_size);
Level ans = __builtin_ctzll(~(unsigned long long)node); // bitwise-negate & count trailing zeroes
#ifndef NDEBUG
Level chk;
for (chk=0; node&1; chk++, node>>=1);
assert(ans == chk);
#endif
return ans;
}
// get node's parent, or nrank if called on the root
inline Rank parent(Rank node, Level k) const {
assert(k == level(node));
assert(node < full_size);
if (node == root) {
return nrank;
}
Rank ofs = Rank(1) << k;
assert(node >= ofs-1);
if (((node>>(k+1)) & 1)) { // node is right child
assert(node >= ofs);
return node-ofs;
}
// node is left child
return node+ofs;
}
inline Rank parent2(Rank node) const {
// helper to compute level if it isn't already known (which it often is)
return parent(node, level(node));
}
// get node's left child, or nrank if called on a leaf
inline Rank left(Rank node, Level k) const {
assert(k == level(node));
return k > 0 ? node - (Rank(1) << (k-1)) : nrank;
}
inline Rank left2(Rank node) const {
return left(node, level(node));
}
// get node's right child, or nrank if called on a leaf
inline Rank right(Rank node, Level k) const {
assert(k == level(node));
return k > 0 ? node + (Rank(1) << (k-1)) : nrank;
}
inline Rank right2(Rank node) const {
return right(node, level(node));
}
// leftmost leaf under subtree root
inline Rank leftmost_leaf(Rank subtree, Level k) const {
assert(k == level(subtree));
auto ofs = (Rank(1)<<k) - 1;
assert(subtree >= ofs);
return subtree - ofs;
}
inline Rank leftmost_leaf2(Rank subtree) const {
return leftmost_leaf(subtree, level(subtree));
}
// rightmost leaf under subtree root
inline Rank rightmost_leaf(Rank subtree, Level k) const {
assert(k == level(subtree));
auto ofs = (Rank(1)<<k) - 1;
assert(subtree + ofs < full_size);
return subtree + ofs;
}
inline Rank rightmost_leaf2(Rank subtree) const {
return rightmost_leaf(subtree, level(subtree));
}
// top-down overlap scan for [qbeg,qend). return # of nodes visited.
// recursion depth limited to tree height
size_t scan(Rank subtree, Level k, Pos qbeg, Pos qend, std::vector<const Item*>& ans) const {
assert(subtree < full_size);
assert(k == level(subtree));
if (subtree >= nodes.size()) {
// When we arrive at an imaginary node, its right subtree must be all imaginary, so we
// only need to descend left.
return 1 + (k>0 ? scan(left(subtree, k), k-1, qbeg, qend, ans) : 0);
} else if (k <= 2) {
// unroll low-level traversal to reduce overhead
const Rank lml = leftmost_leaf(subtree, k),
rml = std::min(rightmost_leaf(subtree, k), nodes.size()-1);
Rank r = lml;
for (; r <= rml; ++r) {
const Node& n = nodes[r];
if (n.beg() >= qend) {
break;
}
if (n.end() > qbeg) {
ans.push_back(&(n.item));
}
}
return r-lml;
}
// textbook recursive search
size_t cost = 1;
const Node& n = nodes[subtree];
if (n.inside_max_end > qbeg) { // something in current subtree extends into/over query
const Level ck = k-1;
cost += scan(left(subtree, k), ck, qbeg, qend, ans);
Pos nbeg = n.beg();
if (nbeg < qend) { // this node isn't already past query
if (n.end() > qbeg) { // this node overlaps query
ans.push_back(&(n.item));
}
cost += scan(right(subtree, k), ck, qbeg, qend, ans);
}
}
return cost;
}
iit_base(NodeArray<Node>& nodes_)
: nodes(std::move(nodes_))
, root_level(0)
, root(std::numeric_limits<Rank>::max())
{
// compute the implied tree geometry
for (root_level = 0, full_size = 0; full_size < nodes.size();
++root_level, full_size = (size_t(1)<<(root_level+1)) - 1);
root = (Rank(1) << root_level) - 1;
if (nodes.size()) {
#ifndef NDEBUG
for (Rank r = 0; r < nodes.size()-1; ++r) {
assert(nodes[r].beg() <= nodes[r+1].beg());
}
#endif
// Memoize the path from the rightmost leaf up to the root. This will trace the border
// between the real and imaginary nodes (if any), which we'll refer to in indexing
// below. Some of these border nodes may be imaginary.
std::vector<Rank> right_border_nodes({
nodes.size() - (2 - nodes.size() % 2) // rightmost real leaf
});
while (right_border_nodes.back() != root) {
right_border_nodes.push_back(parent2(right_border_nodes.back()));
}
// bottom-up indexing
Pos right_border_ime = nodes[right_border_nodes[0]].inside_max_end;
for (Level k=1; k <= root_level; ++k) {
// for each in nodes on this level
size_t x = size_t(1)<<(k-1), step = x<<2;
for (Rank n = (x<<1)-1; n < nodes.size(); n += step) {
// figure inside_max_end
Pos ime = nodes[n].end();
ime = std::max(ime, nodes[left(n,k)].inside_max_end);
if (right(n,k) < nodes.size()) {
ime = std::max(ime, nodes[right(n,k)].inside_max_end);
} else {
// right child is imaginary; take the last border observation
ime = std::max(ime, right_border_ime);
}
assert(ime != Node::npos);
nodes[n].inside_max_end = ime;
if (n == right_border_nodes[k]) {
// track inside_max_end of the real nodes on the border
right_border_ime = ime;
}
}
}
}
}
public:
// overlap query; fill ans and return query cost (number of tree nodes visited)
virtual size_t overlap(Pos qbeg, Pos qend, std::vector<const Item*>& ans) const {
ans.clear();
return scan(root, root_level, qbeg, qend, ans);
}
// overlap query, return vector of results
std::vector<const Item*> overlap(Pos qbeg, Pos qend) const {
std::vector<const Item*> ans;
overlap(qbeg, qend, ans);
return ans;
}
};
// Wrapper for std::sort; the sorting algorithm can be customized by providing a different function
// to the builder constructor.
template<class NodeArray>
void iit_sort(NodeArray& vec) {
std::sort(vec.begin(), vec.end());
}
// template for the builder class exposed by each user-facing class, which takes in items either
// all at once from InputIterator, or streaming one-by-one
template<class iitT, typename Item, class Node, template<class> class NodeArray>
class iit_builder_base {
NodeArray<Node> nodes_;
std::function<void(NodeArray<Node>&)> sort_;
public:
iit_builder_base(void sort(NodeArray<Node>&) = iit_sort<NodeArray<Node>>)
: sort_(sort)
{}
template<typename InputIterator>
iit_builder_base(InputIterator begin, InputIterator end, void sort(NodeArray<Node>&) = iit_sort<NodeArray<Node>>)
: sort_(sort) {
add(begin, end);
}
void add(const Item& it) {
nodes_.push_back(Node(it));
}
template<typename InputIterator>
void add(InputIterator begin, InputIterator end) {
std::for_each(begin, end, [&](const Item& it) { add(it); });
}
template<typename... Args>
iitT build(Args&&... args) {
sort_(nodes_);
return iitT(nodes_, std::forward<Args>(args)...);
}
};
// Basic implicit interval tree (a reimplementation of cgranges)
// The optional fifth and sixth template parameters can substitute a different NodeArray
// implementation.
template<typename Pos, typename Item, Pos get_beg(const Item&), Pos get_end(const Item&), template<class> class NodeArray = std::vector>
class iit : public iit_base<Pos, Item, iit_node_base<Pos, Item, get_beg, get_end>, NodeArray> {
using Node = iit_node_base<Pos, Item, get_beg, get_end>;
iit(NodeArray<Node>& nodes_)
: iit_base<Pos, Item, Node, NodeArray>(nodes_)
{}
public:
using builder = iit_builder_base<iit<Pos, Item, get_beg, get_end>, Item, Node, NodeArray>;
friend builder;
};
// iitii-specialized node type
template<typename Pos, typename Item, Pos get_beg(const Item&), Pos get_end(const Item&)>
struct iitii_node : public iit_node_base<Pos, Item, get_beg, get_end> {
// Additional augment value for iitii nodes, which helps us prove when we can stop climbing in
// the bottom-up search for a subtree root which must contain all query results beneath it.
Pos outside_max_end;
// outside_max_end of node n is the maximum m.end() of all nodes m outside of n & its subtree
// with m.beg() < n.beg(); -infinity if there are no such nodes.
//
// Furthermore,
// outside_min_beg of node n is the minimum m.beg() of all nodes m outside of n & its subtree
// with m.beg() >= n.beg(); infinity if there are no such nodes.
// But we don't need to store outside_min_beg, because we can compute it in constant time using
// rank offsets in the beg-sorted node array.
//
// Suppose during a query for [qbeg, qend) we climb up to a node n with,
// (i) n.outside_max_end <= qbeg; AND
// (ii) qend <= n.outside_min_beg
// By (i), any node outside n & subtree with beg < n's cannot overlap the query. By (ii), any
// node outside n & subtree with beg >= n's cannot overlap the query. This exhausts all nodes
// outside of n & subtree, so we need not climb past n.
iitii_node(const Item& item_)
: iit_node_base<Pos, Item, get_beg, get_end>(item_)
, outside_max_end(std::numeric_limits<Pos>::min())
{}
};
// simple linear regression of y ~ x given points [(x,y)], returning (intercept, slope)
template<typename XT, typename YT>
std::pair<double,double> regress(const std::vector<std::pair<XT,YT>>& points) {
if (points.size() <= 1) {
return std::make_pair(0.0, 0.0);
}
double sum_x, sum_y, cov, var;
sum_x = sum_y = cov = var = 0.0;
for (const auto& pt : points) {
sum_x += double(pt.first);
sum_y += double(pt.second);
}
const double mean_x = sum_x/points.size(), mean_y = sum_y/points.size();
for (const auto& pt : points) {
const double x_err = pt.first - mean_x;
cov += x_err*(pt.second - mean_y);
var += x_err*x_err;
}
if (var == 0.0) {
return std::make_pair(0.0, 0.0);
}
const double m = cov / var;
return std::make_pair(mean_y - m*mean_x, m);
}
// floor(log2(x)) for positive x (quickly)
inline unsigned log2ull(unsigned long long x) {
assert(x);
unsigned ans = unsigned(8*sizeof(unsigned long long) - __builtin_clzll(x) - 1);
assert(ans == unsigned(floor(log2(double(x)))));
return ans;
}
// here it is
template<typename Pos, typename Item, Pos get_beg(const Item&), Pos get_end(const Item&), template<class> class NodeArray = std::vector>
class iitii : public iit_base<Pos, Item, iitii_node<Pos, Item, get_beg, get_end>, NodeArray> {
using Node = iitii_node<Pos, Item, get_beg, get_end>;
using super = iit_base<Pos, Item, Node, NodeArray>;
using typename super::Rank;
using typename super::Level;
using super::left;
using super::right;
using super::leftmost_leaf;
using super::leftmost_leaf2;
using super::rightmost_leaf;
using super::parent;
using super::nodes;
using super::full_size;
using super::nrank;
using super::level;
using super::root;
using super::root_level;
inline Pos outside_min_beg(Rank subtree, Level k) const {
// constant-time computation of outside_min_beg: beg() of the node ranked one higher than
// subtree's rightmost child
const Rank r = rightmost_leaf(subtree, k);
__builtin_prefetch(&(nodes[r+1]));
const Pos beg = nodes[subtree].beg();
const Rank l = leftmost_leaf(subtree, k);
if (l && nodes[l-1].beg() == beg) {
// corner case: nodes to the left of the subtree can have the same beg as subroot
// and outside_min_beg is defined on nodes with beg >= subroot's.
return beg;
}
return r < nodes.size()-1 ? nodes[r+1].beg() : std::numeric_limits<Pos>::max();
}
// Additional tree navigation concept, LevelRank: the rank of a node **within its level**
// e.g. a level-k node with LevelRank=1 is the second-lowest (second-leftmost) node on level k
typedef std::size_t LevelRank;
inline Rank rank_of_levelrank(Level k, LevelRank ofs) const {
return (size_t(1)<<k)*(2*ofs+1)-1;
}
inline LevelRank levelrank_of_rank(Rank r) const {
return ((r+1)/(size_t(1)<<level(r))-1)/2;
}
// Rank prediction model: the [min_beg, max_beg] range is partitioned into a number C of
// domains, each covering an equal-sized portion of that range. The domain pertaining to a
// position beg is d(beg) = floor((beg-min_beg)*C/(max_beg-min_beg)), bounded to [0,C).
//
// For each domain d, we store three parameters: a Level l[d] ∈ [0,root_level] into which we
// will jump, and linear weights w[d,0] and w[d,1] for the regression of LevelRank on Pos,
// lr(beg) ~ w[d(beg),0] + w[d(beg),1]*beg
//
// To start a query for qbeg, jump to the node: rank_of_levelrank(l[d(qbeg)], lr(qbeg))
typedef std::size_t Domain;
Domain domains; // C
Pos min_beg = std::numeric_limits<Pos>::max(),
domain_size = Node::npos;;
std::vector<float> parameters; // C rows of three parameters (row-major storage): w[0,d],
// w[1,d] and l[d]. NB: the third is a Level stored as a float.
inline Domain which_domain(Pos beg) const {
if (beg < min_beg) {
return 0;
}
return std::min(domains-1, Domain((beg-min_beg)/domain_size));
}
inline Rank interpolate(Level k, float w0, float w1, Pos qbeg) const {
// given model parameters within a domain, return the node to start searching for qbeg
const float ofs_f = w0 + w1*float(qbeg);
assert(std::isfinite(ofs_f));
const Rank r = rank_of_levelrank(k, LevelRank(std::max(0.0f, roundf(ofs_f))));
assert(r >= nodes.size() || level(r) == k);
// detail: if rank is imaginary (qbeg is off-scale high), start from rightmost real leaf
const auto nsz = nodes.size();
return r < nsz ? r : (nsz - (2 - nsz%2));
}
void train() {
// Fibonacci-ish series of tree levels at which to evaluate interpolation model fit
const std::vector<Level> TRAIN_LEVELS = {0, 1, 2, 4, 7, 12, 20, 33, 54};
// scan the nodes to extract <Pos,Rank> points partitioned by domain
std::vector<std::vector<std::pair<Pos,Rank>>> points(domains);
for (Rank r = 0; r < nodes.size(); ++r) {
points.at(which_domain(nodes[r].beg())).push_back(std::make_pair(nodes[r].beg(), r));
}
// train each domain-specific model
for (Domain domain = 0; domain < domains; ++domain) {
// partition the domain points by tree level, converting Ranks to LevelRanks
std::vector<std::vector<std::pair<Pos,LevelRank>>> points_by_level(root_level+1);
for (const auto& p : points[domain]) {
Level k = level(p.second);
points_by_level.at(k)
.push_back(std::make_pair(p.first, levelrank_of_rank(p.second)));
}
// for each level,
double lowest_cost = std::numeric_limits<double>::max();
for (const Level k : TRAIN_LEVELS) {
if (k >= root_level || points_by_level[k].size() <= 1) {
break;
}
// regress points on this level
auto w = regress<Pos,LevelRank>(points_by_level[k]);
if (w.second) {
// calculate estimate of search cost (average over all domain points)
size_t cost = 0;
for (const auto& p : points[domain]) {
const Pos x = p.first;
const Rank y = p.second;
const Rank fx = interpolate(k, float(w.first), float(w.second), x);
const size_t error = (fx>=y ? fx-y : y-fx)/(size_t(1)<<k);
const size_t error_penalty = error ? 2*(1+log2ull(error)) : 0,
overlap_penalty = nodes[fx].outside_max_end>x ? 1+(root_level-k)/2 : 0;
cost += k + std::max(error_penalty, overlap_penalty);
}
double avg_cost = double(cost)/points[domain].size();
// store parameters if cost estimate is lower than top-down search and lower
// than previous levels
if (avg_cost < root_level && avg_cost < lowest_cost) {
lowest_cost = avg_cost;
float *pp = &(parameters[3*domain]);
pp[0] = float(w.first);
pp[1] = float(w.second);
pp[2] = float(k);
}
}
}
points[domain].clear(); // free a little memory
/*
std::cout << "domain = " << domain << " level = " << Level(parameters[3*domain+2])
<< " E[cost] = " << lowest_cost << std::endl;
*/
}
}
// Given qbeg, select domain and predict search start node
Rank predict(Pos qbeg) const {
auto which = which_domain(qbeg);
assert(which < domains);
const float *pp = &(parameters[3*which]);
const float lv_f = pp[2];
if (lv_f < 0) {
return nrank;
}
assert(lv_f >= 0 && lv_f <= root_level);
const Level k = Level(lv_f);
return interpolate(k, pp[0], pp[1], qbeg);
}
iitii(NodeArray<Node>& nodes_, Domain domains_)
: super(nodes_)
, domains(std::max(Domain(1),domains_))
, domain_size(std::numeric_limits<Pos>::max())
{
parameters.resize(domains*3, -1.0f);
if (nodes.size()) {
// equal size (in Pos units) of each domain
min_beg = nodes[0].beg();
domain_size = 1 + (nodes[nodes.size()-1].beg()-min_beg)/domains;
// compute running max_end along the sorted array, which we'll look up while computing
// outside_max_end below
std::vector<Pos> running_max_end { nodes[0].end() };
for (Rank n = 1; n < nodes.size(); ++n) {
running_max_end.push_back(std::max(running_max_end[n-1], nodes[n].end()));
}
// fill outside_max_end
for (Rank n = 0; n < nodes.size(); ++n) {
Node& node = nodes[n];
Rank l = leftmost_leaf2(n);
if (l>0) {
// outside_max_end is the running_max_end of the highest-ranked node ranked
// below n's leftmost child & has beg strictly below n's
Rank leq = l-1;
while (nodes[leq].beg() == node.beg()) {
if (leq == 0) {
break;
}
--leq;
}
assert(nodes[leq].beg() <= node.beg());
node.outside_max_end = nodes[leq].beg() < node.beg()
? running_max_end[leq]
: std::numeric_limits<Pos>::min();
}
}
// train the rank prediction models
train();
}
}
public:
// iitii::builder::build() takes a size_t argument giving the number of domains to model
using builder = iit_builder_base<iitii<Pos, Item, get_beg, get_end>, Item, Node, NodeArray>;
friend builder;
size_t overlap(Pos qbeg, Pos qend, std::vector<const Item*>& ans) const override {
// ask model which leaf we should begin our bottom-up climb at
Rank prediction = predict(qbeg);
if (prediction == nrank) {
// the model did not make a prediction for some reason, so just go to the root
return super::overlap(qbeg, qend, ans);
}
const Level k0 = level(prediction);
assert(k0 <= root_level);
__builtin_prefetch(&(nodes[parent(prediction, k0)]));
// climb until our necessary & sufficient criteria are met, or the root
Rank subtree = prediction;
Level k = k0;
while (subtree != root && // stop at root
(subtree >= nodes.size() || // continue climb through imaginary
qbeg < nodes[subtree].outside_max_end || // possible outside overlap from left
outside_min_beg(subtree, k) < qend)) { // possible outside overlap from right
subtree = parent(subtree, k++);
assert(k == level(subtree));
__builtin_prefetch(&(nodes[parent(subtree, k)]));
}
const auto climb_cost = k - k0;
auto self = const_cast<iitii<Pos, Item, get_beg, get_end>*>(this); // getting around const
self->queries++;
self->total_climb_cost += climb_cost;
// scan the subtree for query results.
// pessimistically, we triple the climbing cost when adding it to the top-down search cost,
// because the outside_min_beg() lookup may incur two additional cache misses.
ans.clear();
return super::scan(subtree, k, qbeg, qend, ans) + 3*climb_cost;
}
size_t queries = 0;
size_t total_climb_cost = 0;
using super::overlap;
};