-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathproject_setup.py
102 lines (86 loc) · 2.66 KB
/
project_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2024 Iguazio
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import mlrun
def setup(project: mlrun.projects.MlrunProject) -> mlrun.projects.MlrunProject:
"""
Creating the project for this demo. This function is expected to be called automatically when
calling the function `mlrun.get_or_create_project`.
:returns: a fully prepared project for this demo.
"""
# Set the project git source:
source = project.get_param(key="source")
if source:
print(f"Project Source: {source}")
project.set_source(source=source, pull_at_runtime=True)
if project.get_param("pre_load_data"):
print("pre_load_data")
# Refresh MLRun hub to the most up-to-date version:
mlrun.get_run_db().get_hub_catalog(source_name="default", force_refresh=True)
# Set the functions:
project.set_function(
func="src/get_vector.py",
name="get-vector",
handler="get_offline_features",
kind="job",
).save()
_set_function(
project=project,
func="hub://feature_selection",
name="feature-selection",
kind="job",
)
_set_function(
project=project,
func="hub://auto_trainer",
name="train",
kind="job",
)
_set_function(
project=project,
func="hub://auto_trainer",
name="evaluate",
kind="job",
)
_set_function(
project=project,
func="hub://v2_model_server",
name="serving",
kind="serving",
)
# Set the training workflow:
project.set_workflow("main", "src/train_workflow.py")
# Save and return the project:
project.save()
return project
def _set_function(
project: mlrun.projects.MlrunProject,
func: str,
name: str,
kind: str,
node_name: str = None,
image: str = None,
):
# Set the given function:
with_repo = not func.startswith("hub://")
mlrun_function = project.set_function(
func=func,
name=name,
kind=kind,
with_repo=with_repo,
image=image,
)
if node_name:
mlrun_function.with_node_selection(node_name=node_name)
# Save:
mlrun_function.save()