forked from xrlin/goscheme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtype.go
529 lines (466 loc) · 11.8 KB
/
type.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
package goscheme
import (
"bytes"
"fmt"
"regexp"
"strconv"
"strings"
)
// Expression represent the parsed tokens of scheme syntax tree or the low level builtin types.
type Expression interface{}
// Number in scheme.
type Number float64
// String represents string in scheme.
type String string
// String return the string to display wrapping the low level string with quotes.
func (s String) String() string {
return "\"" + string(s) + "\""
}
// SyntaxMap contains all defined scheme syntax.
var SyntaxMap = make(map[string]*Syntax)
// SyntaxFunc specified the common func format for Syntax
type SyntaxFunc func(args []Expression, env *Env) (Expression, error)
// Syntax wrap a syntax and give method to eval it.
type Syntax struct {
fn SyntaxFunc
name string
}
// String return the string to display representing the syntax.
func (s *Syntax) String() string {
return fmt.Sprintf("#[Syntax %s]", s.name)
}
// Eval runs the syntax and return the result.
func (s *Syntax) Eval(args []Expression, env *Env) (Expression, error) {
return s.fn(args, env)
}
// NewSyntax construct a Syntax with custom name and SyntaxFunc
func NewSyntax(name string, fn SyntaxFunc) *Syntax {
return &Syntax{fn, name}
}
func initSyntax() {
SyntaxMap["define"] = NewSyntax("define", evalDefine)
SyntaxMap["eval"] = NewSyntax("eval", evalEval)
SyntaxMap["apply"] = NewSyntax("apply", evalApply)
SyntaxMap["if"] = NewSyntax("if", evalIf)
SyntaxMap["cond"] = NewSyntax("cond", evalCond)
SyntaxMap["begin"] = NewSyntax("begin", evalBegin)
SyntaxMap["lambda"] = NewSyntax("lambda", evalLambda)
SyntaxMap["load"] = NewSyntax("load", evalLoad)
SyntaxMap["delay"] = NewSyntax("delay", evalDelay)
SyntaxMap["and"] = NewSyntax("and", evalAnd)
SyntaxMap["or"] = NewSyntax("and", evalOr)
SyntaxMap["let"] = NewSyntax("let", evalLet)
SyntaxMap["let*"] = NewSyntax("let*", evalL2RLet)
SyntaxMap["letrec"] = NewSyntax("letrec", evalLetRec)
SyntaxMap["quote"] = NewSyntax("quote", evalQuote)
SyntaxMap["set!"] = NewSyntax("set!", evalSet)
}
// Symbol represents the variable name in scheme.
type Symbol string
// Quote type in scheme
type Quote string
type commonFunction func(args ...Expression) (Expression, error)
// Function represents the basic scheme function in pure go.
type Function struct {
name string
function commonFunction
minArgs int
maxArgs int
}
// Call eval the function with args and returns the result.
func (f Function) Call(args ...Expression) (Expression, error) {
if err := f.validateArgCount(args...); err != nil {
return UndefObj, err
}
return f.function(args...)
}
func (f Function) validateArgCount(args ...Expression) error {
if f.minArgs == -1 && f.maxArgs == -1 {
return nil
}
c := len(args)
if f.minArgs == f.maxArgs && f.maxArgs != c {
return fmt.Errorf("%s requires %d arguments but %d arguments provided", f.name, f.maxArgs, c)
}
if f.minArgs != -1 && f.minArgs > c {
return fmt.Errorf("%s requires at least %d arguments but %d arguments provided", f.name, f.minArgs, c)
}
if f.maxArgs != -1 && f.maxArgs < c {
return fmt.Errorf("%s requires no more than %d arguments, but %d arguments provided", f.name, f.maxArgs, c)
}
return nil
}
// String returns the message to display
func (f Function) String() string {
return "#[BuiltinFunction]"
}
// NewFunction return a Function struct init with arguments.
// minArgs, maxArgs define the arguments count limitation of Function. Set to -1 means no limitation.
func NewFunction(funcName string, f commonFunction, minArgs int, maxArgs int) Function {
return Function{
name: funcName,
function: f,
minArgs: minArgs,
maxArgs: maxArgs,
}
}
// Thunk wraps expression for lazy execution
// Thunk should use as pointer
type Thunk struct {
// expression to execute
Exp Expression
// expression result cache
ret Expression
// context to execute Exp
Env *Env
}
// String returns the string represents the Thunk struct.
func (t Thunk) String() string {
if t.ret != nil {
return fmt.Sprintf("#[Thunk %s]", t.ret)
}
return fmt.Sprintf("#[Thunk exp: %s]", t.Exp)
}
// Value returns the actual value of the thunk
func (t *Thunk) Value() (Expression, error) {
if t.ret != nil {
return t.ret, nil
}
value, err := Eval(t.Exp, t.Env)
if err != nil {
return UndefObj, err
}
switch t2 := value.(type) {
case *Thunk:
value, err = t2.Value()
default:
}
if err != nil {
return UndefObj, err
}
t.ret = value
return t.ret, nil
}
// IsThunk checks whether an expression is a thunk and return the result
func IsThunk(exp Expression) bool {
switch exp.(type) {
case *Thunk:
return true
default:
return false
}
}
// NewThunk creates a thunk and returns the pointer
func NewThunk(exp Expression, env *Env) *Thunk {
return &Thunk{Env: env, Exp: exp}
}
// ActualValue returns the actual value of an expression.
// If the expression is a Thunk, eval and return the result, otherwise return the expression itself.
func ActualValue(exp Expression) (Expression, error) {
switch p := exp.(type) {
case *Thunk:
return p.Value()
default:
return exp, nil
}
}
// NilType represents Nil in scheme
type NilType struct{}
// Strings returns the string representing NilType.
func (n NilType) String() string {
return "()"
}
// NilObj is the common object of NilType
var NilObj = NilType{}
// Undef represents undefined expression value.
type Undef struct{}
// String just implements the Stringer interface.
func (u Undef) String() string {
return "<UNDEF>"
}
func extractList(expression Expression) (ret []Expression) {
if !isList(expression) {
return
}
switch v := expression.(type) {
case *Pair:
ret = append(ret, v.Car)
ret = append(ret, extractList(v.Cdr)...)
return
default:
return
}
}
// UndefObj is the common Undef object.
var UndefObj = Undef{}
// IsNumber check whether the expression represents Number.
func IsNumber(exp Expression) bool {
switch v := exp.(type) {
case string:
_, err := strconv.ParseFloat(v, 64)
if err != nil {
return false
}
return true
case Number:
return true
default:
return false
}
}
// IsString check whether the expression represents String in scheme.
func IsString(exp Expression) bool {
switch v := exp.(type) {
case string:
ok, err := regexp.MatchString("\"(.|[\\r\\n])*\"", v)
if ok && err == nil {
return true
}
return false
case String:
return true
default:
return false
}
}
// IsSyntaxExpression check whether the expression is a scheme syntax expression.
func IsSyntaxExpression(exp Expression) bool {
ops, ok := exp.([]Expression)
if !ok {
return false
}
operator := ops[0]
for key := range SyntaxMap {
if key == operator {
return true
}
}
return false
}
// IsSymbol checks whether the expression is Symbol.
func IsSymbol(expression Expression) bool {
_, ok := expression.([]Expression)
if ok {
return false
}
if _, ok := expression.(string); !ok {
return false
}
if IsNumber(expression) || IsString(expression) || IsBoolean(expression) {
return false
}
return true
}
// IsBoolean return true if the expression represents bool.
func IsBoolean(exp Expression) bool {
_, ok := exp.(bool)
if ok {
return true
}
return exp == "#t" || exp == "#f"
}
// IsTrue check whether the condition is true. Return false when Exp is #f or false, otherwise return true
func IsTrue(exp Expression) bool {
if exp == "#f" || exp == false {
return false
}
return true
}
// IsNilObj returns true when the expression is NilTyp.
func IsNilObj(obj Expression) bool {
switch obj.(type) {
case NilType:
return true
default:
return false
}
}
// IsUndefObj returns true when the expression is Undef.
func IsUndefObj(obj Expression) bool {
switch obj.(type) {
case Undef:
return true
default:
return false
}
}
// IsPair checks whether the expression value is a *Pair.
func IsPair(obj Expression) bool {
switch obj.(type) {
case *Pair:
return true
default:
return false
}
}
// LambdaProcess wraps the body and env of a lambda expression
type LambdaProcess struct {
params []Symbol
body []Expression // expressions of the lambda process
env *Env
}
// String implements the stringer interface
func (lambda *LambdaProcess) String() string {
var buf bytes.Buffer
buf.WriteString("(lambda (")
for i, k := range lambda.params {
buf.WriteString(string(k))
if i != len(k)-1 {
buf.WriteString(" ")
}
}
buf.WriteString(") ")
buf.WriteString(concatLambdaBodyToString(lambda.body))
buf.WriteString(")")
return buf.String()
}
// return the string represents the expression text
func expToPrintString(exp Expression) string {
var buf bytes.Buffer
switch v := exp.(type) {
case []Expression:
buf.WriteString("(")
for i, exp := range v {
buf.WriteString(expToPrintString(exp))
if i != len(v)-1 {
buf.WriteString(" ")
}
}
buf.WriteString(")")
default:
buf.WriteString(fmt.Sprintf("%s", exp))
}
return buf.String()
}
func concatLambdaBodyToString(expressions []Expression) string {
var buf bytes.Buffer
for i, exp := range expressions {
buf.WriteString(expToPrintString(exp))
if i != len(expressions)-1 {
buf.WriteString(" ")
}
}
return buf.String()
}
// Body returns the expressions of body.
func (lambda *LambdaProcess) Body() Expression {
if len(lambda.body) == 1 {
return lambda.body[0]
}
return sequenceToExp(lambda.body)
}
// Pair combines the two values. Should only use with pointer
type Pair struct {
Car, Cdr Expression
}
// IsNull checks whether the *Pair is null.
func (p *Pair) IsNull() bool {
return p.Car == nil && p.Cdr == nil
}
// IsList check whether the *Pair is a well formed list.
func (p *Pair) IsList() bool {
currentPair := p
for {
if currentPair.IsNull() {
return true
}
switch cdr := currentPair.Cdr.(type) {
case *Pair:
currentPair = cdr
case NilType:
return true
default:
return false
}
}
}
// String returns the string representing the *Pair.
func (p *Pair) String() string {
currentPair := p
var strSlices []string
for !currentPair.IsNull() {
if IsPair(currentPair.Car) {
strSlices = append(strSlices, currentPair.Car.(*Pair).String())
} else {
strSlices = append(strSlices, fmt.Sprintf("%v", currentPair.Car))
}
if IsPair(currentPair.Cdr) {
currentPair = currentPair.Cdr.(*Pair)
} else {
if IsNilObj(currentPair.Cdr) {
break
}
strSlices = append(strSlices, ".")
strSlices = append(strSlices, fmt.Sprintf("%v", currentPair.Cdr))
break
}
}
return "(" + strings.Join(strSlices, " ") + ")"
}
// check the result should print in console
func shouldPrint(exp Expression) bool {
if exp == nil {
return false
}
switch exp.(type) {
case Undef:
return false
default:
return true
}
}
// Output string in interactive console that represents the expression value.
func valueToString(exp Expression) string {
switch v := exp.(type) {
case bool:
if !v {
return "#f"
}
if v {
return "#t"
}
default:
return fmt.Sprintf("%v", exp)
}
return fmt.Sprintf("%v", exp)
}
// IsPrimitiveExpression checks whether the expressions value is the primitive types.
func IsPrimitiveExpression(exp Expression) bool {
if IsNullExp(exp) || IsUndefObj(exp) ||
IsQuote(exp) || IsNumber(exp) ||
IsBoolean(exp) || IsString(exp) ||
IsThunk(exp) || IsPair(exp) ||
isList(exp) || IsLambdaType(exp) {
return true
}
return false
}
// IsQuote check whether the value is Quote.
func IsQuote(exp Expression) bool {
_, ok := exp.(Quote)
return ok
}
// IsNullExp checks whether the expression represents Null(nil, NilType, blank list, blank expression).
func IsNullExp(exp Expression) bool {
if exp == nil {
return true
}
switch e := exp.(type) {
case NilType:
return true
case *Pair:
return e.IsNull()
case []Expression:
if len(e) == 0 {
return true
}
return false
default:
return false
}
}
// IsLambdaType checks whether this expression low level value is *LambdaProcess
func IsLambdaType(expression Expression) bool {
_, ok := expression.(*LambdaProcess)
return ok
}