-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinteractive_all.py
107 lines (86 loc) · 3.82 KB
/
interactive_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
python interactive_all.py
CUDA_VISIBLE_DEVICES=1 python interactive_all.py
"""
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# ckpt_name = "model_save/skt-kogpt2-base-v2_split-99-final/pytorch_model.bin"
# model_name = "skt/kogpt2-base-v2"
model_name = "momo/KLUE-TOD" ## huggingface uploade
## load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, bos_token='</s>', eos_token='</s>', unk_token='<unk>',
pad_token='<pad>', mask_token='<mask>')
SPECIAL_TOKENS = ['<sos_u>', '<sos_r>', '<sos_b>', '<sos_a>', '<eos_u>', '<eos_r>', '<eos_b>',
'<eos_a>', '<sos_context>', '<eos_context>']
tokenizer.add_tokens(SPECIAL_TOKENS)
## load model
model = AutoModelForCausalLM.from_pretrained(model_name)
model.resize_token_embeddings(len(tokenizer))
# model.load_state_dict(torch.load(ckpt_name, map_location="cpu"))
model.cuda()
'''
DST inference
'''
pre_turn = ""
belief_state = ""
with torch.no_grad():
while True:
current_turn = input("\nUser: ") ## current_turn
dialogue_history = pre_turn + current_turn ## dialogue_history
## tokenizing
tokens = tokenizer(
f"{str(tokenizer.bos_token)}" + "<sos_context>" + "<sos_u>" + dialogue_history + "<eos_u>" + "<eos_context>", # + "<sos_b>" + b + "<eos_b>",
return_tensors="pt",
truncation=True,
padding=True,
max_length=400
)
input_ids = tokens.input_ids.cuda()
sample_output = model.generate(
input_ids,
max_length=768,
num_beams=10,
early_stopping=True,
no_repeat_ngram_size=4,
)
gen_dst = sample_output[0]
gen_dst_text = []
eosb_tok = torch.LongTensor(tokenizer.encode('<sos_r>')).cuda()
for i, tok_i in enumerate(gen_dst): ## <sos_r>를 만났을때까지 생성. (Belief state까지)
gen_dst_text.append(tok_i)
if tok_i == eosb_tok:
break
belief_state = tokenizer.decode(gen_dst_text[len(input_ids[0]):-1], skip_special_tokens=True) ### input data의 결과는 제거. DST의 결과만 저장.
print("dst :", belief_state.replace("<sos_b>", "").replace("<eos_b>", "")) ## special token remove
# system response inference
belief_state += belief_state ### Belief state result save
## tokenizing
all_tokens = tokenizer(
f"{str(tokenizer.bos_token)}" + "<sos_context>" + "<sos_u>" + dialogue_history + "<eos_u>" + "<eos_context>" + "<sos_b>" + belief_state + "<eos_b>",
return_tensors="pt",
truncation=True,
padding=True,
max_length=400
)
all_input_ids = all_tokens.input_ids.cuda()
all_sample_output = model.generate(
all_input_ids,
max_length=768,
num_beams=10,
early_stopping=True,
no_repeat_ngram_size=4,
)
gen = all_sample_output[0]
gen_text = []
eosr_tok = torch.LongTensor(tokenizer.encode('<eos_r>')).cuda()
for i, tok_i in enumerate(gen): ## <eos_r>를 만났을때까지 생성. (system response까지)
gen_text.append(tok_i)
if tok_i == eosr_tok:
break
System_response = tokenizer.decode(gen_text[len(all_input_ids[0]):-1], skip_special_tokens=True) ### input data의 결과는 제거. system response의 결과만 저장.
System_response = System_response.replace("<sos_r>", "").replace("<eos_context>", "") ## special token remove
pre_turn = pre_turn + current_turn + System_response
if current_turn == "reset": ## reset 타이핑시. dialogue history 초기화
pre_turn = ""
print("reset dialogue history")
print("System :", System_response)