-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbifactor graded response theory(IRT)
586 lines (513 loc) · 27.4 KB
/
bifactor graded response theory(IRT)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#EM算法,a_ini为初始输入矩阵,为简单因子分析的结果。代码算法需要Numpy包支持,基于(Gibbons等,2007,《Full-information item bifactor analysis of graded response data》,"Applied Psychological Measurement",31(1),4-19.)
# copyright @ ZhuoJun Gu,仅供研究之用,复制与传播必须遵守GNU V3.0协议
# http://www.gnu.org/licenses/gpl-3.0.html
#EM算法 - step 0.1 参数初值计算-初始斜率
a_ini = np.minimum(a_ini,0.999)
a_ini = np.maximum(a_ini,0.001)
a_ini = a_ini * np.concatenate((np.ones(size[0])[:,np.newaxis],ujk),axis=1)
a_ini = a_ini / (1 - a_ini ** 2) ** 0.5
#EM算法 - step 0.2 参数初值计算-初始截距和类别参数(cj和dt)
c_item_ini = np.zeros((scores.shape[1],scores_trans[0].shape[1]))
for key in scores_trans:
proportion = np.mean(scores_trans[key], axis=0)
int_key = int(key)
c_item_ini[int_key,:] = c_item_ini[int_key,:] + proportion
c_item_ini = c_item_ini - 10e-50
c_item_ini = abs(c_item_ini)
c_item_ini = inverse_logistic(c_item_ini) / D
#EM算法 - step 0.3 计算项目独有的参数cj
cj_item_ini = np.zeros((scores.shape[1],1))
for i in range(scores.shape[1]):
cj_item_ini[i,0] = np.sum(c_item_ini[i,:],axis=0) / scores_trans[0].shape[1]
#EM算法 - step 0.3 计算等级参数dt
dt_item_ini = np.zeros((scores_trans[0].shape[1],1))
for i in range(scores_trans[0].shape[1]):
dt_item_ini[i,0] = (np.sum(c_item_ini[:,i]) - np.sum(cj_item_ini,axis=0)) / scores.shape[1]
dt_item_ini[0,0] = - np.sum(dt_item_ini[1:,0])
############EM E步和M步算法函数############
def EM_calculation(a_ini, cj_item_ini, dt_item_ini, subject_response):
# EM算法- step 1.0 E步 更新变量r和f(或n)的期望(Gibbons,2007):
#数据输入合法性修改:nan,inf,-inf
a_ini = np.nan_to_num(a_ini)
cj_item_ini = np.nan_to_num(cj_item_ini)
dt_item_ini = np.nan_to_num(dt_item_ini)
# EM算法- step 1.1 计算rjtk,nk-张量运算
def rjtk_nk_para_esti(subject_response):
# 数值准备,与下面计算jacobian矩阵定义temp1不同,待类编程改进
temp1 = np.zeros((scores.shape[1], scores_trans[0].shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
# 给theta1赋值
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, :, None]
# 把thetak加上去
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, i, :, :] = temp1[:, :, i, :, :] + temp2[:, None, None, :]
# 加上截距并乘以D,然后计算Phi
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, :, None, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None])
temp1 = np.maximum(temp1,-70) #防止溢出
temp1 = np.minimum(temp1,70)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
# 计算likelihood
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, i, :, :, :] = temp1[:, i, :, :, :]
else:
temp1[:, i, :, :, :] = temp1[:, i, :, :, :] - temp1[:, i + 1, :, :, :]
temp1 = np.maximum(temp1,10e-50) #不能用10e-200,会溢出
temp1 = np.minimum(temp1,1-10e-50)
# 根据公式里Phi外面的元素,计算pkeppa,顺便计算lik和eik
temp2 = temp1 * subject_response[:, :, None, None, None] # 计算选项连乘01:因为是1或0的次方,实际是相乘再求和
temp2 = np.sum(temp2, axis=1) # 计算选项连乘02
temp2 = temp2 * ujk[:, :, None, None] # 计算题项连乘01:与选项同
temp2 = np.sum(temp2, axis=0) # 计算题项连乘02
#temp2 = np.nan_to_num(temp2) + 10e-100
lik = temp2
temp2 = temp2 * x_weights[:, 0][None, None, :]
temp2 = np.sum(temp2, axis=2)
#temp2 = np.nan_to_num(temp2) + 10e-100
eik = temp2
temp2 = np.prod(temp2, axis=0)
eik = temp2 / eik
temp2 = temp2 * x_weights[:, 0]
temp2 = np.sum(temp2, axis=0)
#temp2 = np.nan_to_num(temp2) + 10e-100
pi = temp2
return lik, eik, pi
# 遍历每个被测获得参数
subject_pkeppa = np.zeros((scores.shape[0]))
subject_eik = np.zeros((scores.shape[0], a_ini.shape[1] - 1, gp_size))
subject_lik = np.zeros((scores.shape[0], a_ini.shape[1] - 1, gp_size, gp_size))
for i in subject_response.keys():
subject_lik[i, :, :, :], subject_eik[i, :, :], subject_pkeppa[i] = rjtk_nk_para_esti(subject_response[i])
if i % 10 == 0:
print('请等待,正在计算1个循环的E步指标,当前被试编号:', i + 1)
# 防止Pi出现负值、零值、大于1
subject_pkeppa = np.maximum(subject_pkeppa,10e-50)
subject_pkeppa = np.minimum(subject_pkeppa,1-10e-50)
# 计算rjtk和nk
temp1 = subject_lik * subject_eik[:, :, :, None] / subject_pkeppa[:, None, None, None]
#temp1 = np.nan_to_num(temp1) + 10e-100
if scores.shape[1] == 2:
nk = temp1 * subject_ri[:,None,None,None]
nk = np.sum(temp1,axis=0)
else:
nk = np.sum(temp1, axis=0)
rjtk = np.zeros((scores.shape[1], a_ini.shape[1] - 1, scores_trans[0].shape[1], gp_size, gp_size))
temp2 = np.ones((scores.shape[1], a_ini.shape[1] - 1, scores_trans[0].shape[1], gp_size, gp_size))
for i in range(scores.shape[0]):
if scores.shape[1] == 2:
temp2 = temp2 * subject_response[i][:, None, :, None, None] * subject_ri[i]
temp2 = temp2 * temp1[i, None, :, None, :, :]
rjtk = rjtk + temp2
else:
temp2 = temp2 * subject_response[i][:, None, :, None, None]
temp2 = temp2 * temp1[i, None, :, None, :, :]
rjtk = rjtk + temp2
#rjtk = np.nan_to_num(rjtk) + 10e-100
# EM算法- step 2.0 M步:r和f(或n)传入,做N-S迭代(后续可考虑采用加权最小二乘,绕过矩阵计算)(Gibbons,2007):
# EM算法- step 2.1 初始化每题雅可比矩阵、信息矩阵(海塞矩阵的期望,解决海塞病态的问题)和似然方程组,初始化各个a,c初值用于N-S迭代
NS_dimention = 5 # 对于单个方程求解,雅可比矩阵固定为1 X 5,信息矩阵固定为5 X 5,NS意指牛顿拉夫逊迭代
NS_dt = 2 # 由于dt和dt+1计算方式与ac不同,必须单独计算,并用np.concatenate合并
NS_ac = 3 # a1,ak,cj的矩阵大小参数
# 2.1a 计算Jacobian-ac部分
# Jacobian准备
temp1 = np.zeros((scores.shape[1], NS_ac, a_ini.shape[1] - 1, scores_trans[0].shape[1], gp_size, gp_size))
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, None, :, None]
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, i, :, :, :] = temp1[:, :, i, :, :, :] + temp2[:, None, None, None, :]
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, None, None, :, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None, None])
temp1 = np.maximum(temp1,-25) #防止溢出
temp1 = np.minimum(temp1,25)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
pjt = temp1[:, 0, :, :, :, :]
# 求Pjt
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
pjt[:, :, i, :, :] = pjt[:, :, i, :, :]
else:
pjt[:, :, i, :, :] = pjt[:, :, i, :, :] - pjt[:, :, i + 1, :, :]
# 对Pjt做概率修正,因为Pk-Pk+1结果有0值或负值不能被P/v除。具体原因未知。后续进一步做数值计算研究。此情况前面也有。
pjt = np.maximum(pjt,10e-50)
pjt = np.minimum(pjt,1-10e-50)
# 求一阶偏导P/v
temp2 = np.zeros((NS_ac, a_ini.shape[1] - 1, gp_size, gp_size))
temp3 = x_nodes[:, 0]
for i in range(a_ini.shape[1] - 1):
# 构造每道题的Jacobian矩阵
temp2[0, i, :, :] = (temp2[0, i, :, :] + temp3[:, None]) * D # J矩阵a1偏导:theta 1 * D
temp2[1, i, :, :] = (temp2[1, i, :, :] + temp3[None, :]) * D # J矩阵ak偏导:theta k * D
temp2[2, i, :, :] = temp2[2, i, :, :] + D # J矩阵cj的偏导:D
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, :, :, i, :, :] = temp1[:, :, :, i, :, :] * temp2[None, :, :, :, :]
else:
temp1[:, :, :, i, :, :] = temp1[:, :, :, i, :, :] * temp2[None, :, :, :, :] - temp1[:, :, :, i + 1, :,
:] * temp2[None, :, :, :,
:] # 这里加截距的张量阶数与E步不同,因为jacobian矩阵定义所致,后期类编程注意调整
# 一阶偏导P/v除以Pjt,并计算jacobian
temp1 = temp1 / pjt[:, None, :, :, :, :]
temp1 = temp1 * rjtk[:, None, :, :, :, :]
temp2 = x_weights[:, 0]
temp1 = temp1 * temp2[None, None, None, None, None, :]
temp1 = temp1 * temp2[None, None, None, None, :, None]
temp1 = np.sum(temp1, axis=3)
temp1 = np.sum(temp1, axis=4)
temp1 = temp1 * ujk[:,None,:, None]
temp1 = np.sum(temp1, axis=2)
jacobian = np.sum(temp1, axis=2)
temp1 = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_ac))
temp1 = temp1 + jacobian[:,None,:]
#temp1 = np.nan_to_num(temp1) + 10e-100
jacobian = temp1
# 2.1b 计算Jacobian-dt部分
# Jacobian准备
temp1 = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_dt, a_ini.shape[1] - 1, gp_size, gp_size))
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, None, :, None]
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, :, i, :, :] = temp1[:, :, :, i, :, :] + temp2[:, None, None, None, :]
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, :, None, None, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None, None])
temp1 = np.maximum(temp1,-25) #防止溢出
temp1 = np.minimum(temp1,25)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
pjt = temp1[:, :, 0, :, :, :]
# 求Pjt
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
pjt[:, i, :, :, :] = pjt[:, i, :, :, :]
else:
pjt[:, i, :, :, :] = pjt[:, i, :, :, :] - pjt[:, i + 1, :, :, :]
# 对Pjt做概率修正,因为Pk-Pk+1结果有0值或负值不能被P/v除。具体原因未知。后续进一步做数值计算研究。此情况前面也有。
pjt = np.maximum(pjt,10e-50)
pjt = np.minimum(pjt,1-10e-50)
# 求一阶偏导P/v
temp2 = np.zeros((NS_dt, a_ini.shape[1] - 1, gp_size, gp_size))
temp3 = x_nodes[:, 0]
for i in range(a_ini.shape[1] - 1):
# 构造每道题的Jacobian矩阵
temp2[0, i, :, :] = temp2[0, i, :, :] + D # J矩阵dt偏导:D
temp2[1, i, :, :] = temp2[1, i, :, :] + D # J矩阵dt+1偏导:D
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, i, :, :, :, :] = temp1[:, i, :, :, :, :] * temp2[None, :, :, :, :]
else:
temp1[:, i, :, :, :, :] = temp1[:, i, :, :, :, :] * temp2[None, :, :, :, :] - temp1[:, i + 1, :, :, :,
:] * temp2[None, :, :, :,
:] # 这里加截距的张量阶数与E步不同,因为jacobian矩阵定义所致,后期类编程注意调整
# 一阶偏导P/v除以Pjt乘以rjkt,并计算jacobian
temp2 = np.zeros((scores.shape[1], c_item_ini.shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp2[:, i, :, :, :] = rjtk[:, :, i, :, :] / pjt[:, i, :, :, :]
else:
temp2[:, i, :, :, :] = rjtk[:, :, i, :, :] / pjt[:, i, :, :, :] - rjtk[:, :, i + 1, :, :] / pjt[:, i + 1, :,
:, :]
temp1 = temp1 * temp2[:, :, None, :, :, :]
temp2 = x_weights[:, 0]
temp1 = temp1 * temp2[None, None, None, None, None, :]
temp1 = temp1 * temp2[None, None, None, None, :, None]
temp1 = np.sum(temp1, axis=0)
temp1 = np.sum(temp1, axis=4)
temp2 = np.zeros((ujk.shape[0], temp1.shape[0], temp1.shape[1], temp1.shape[2], temp1.shape[3]))
temp2 = temp2 + ujk[:, None, None, :, None]
temp2 = temp2 * temp1[None, :, :, :, :]
temp1 = temp2
temp1 = np.sum(temp1, axis=3)
temp1 = np.sum(temp1, axis=3)
#temp1 = np.nan_to_num(temp1) + 10e-100
# 合并
jacobian = np.concatenate((jacobian, temp1), axis=2)
# 2.1c 计算Information_EHessian-参数ac部分
# information准备
temp1 = np.zeros((scores.shape[1], NS_ac, NS_ac, scores_trans[0].shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, None, None, :, None]
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, :, :, i, :, :] = temp1[:, :, :, :, i, :, :] + temp2[:, None, None, None, None, :]
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, None, None, :, None, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None, None, None])
temp1 = np.maximum(temp1,-25) #防止溢出
temp1 = np.minimum(temp1,25)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
# 求一阶偏导P/v
temp2 = np.zeros((scores.shape[1], NS_ac, NS_ac, a_ini.shape[1] - 1, gp_size, gp_size))
temp3 = x_nodes[:, 0]
for i in range(a_ini.shape[1] - 1):
# 构造每道题目的信息矩阵
temp2[:, 0, 0, i, :, :] = (temp2[:, 0, 0, i, :, :] + temp3[None, :, None]) ** 2 * D ** 2 # 信息矩阵:theta 1^2 * D^2
temp2[:, 0, 1, i, :, :] = (temp2[:, 0, 1, i, :, :] + temp3[None, :, None]) * (
temp2[:, 0, 1, i, :, :] + temp3[None, None, :]) * D ** 2 # 信息矩阵:theta 1 * theta k * D^2
temp2[:, 0, 2, i, :, :] = (temp2[:, 0, 2, i, :, :] + temp3[None, :, None]) * D ** 2 # 信息矩阵:theta 1 * D^2
temp2[:, 1, 0, i, :, :] = temp2[:, 0, 1, i, :, :]
temp2[:, 1, 1, i, :, :] = (temp2[:, 0, 0, i, :, :] + temp3[None, None, :]) ** 2 * D ** 2 # 信息矩阵:theta k^2 * D^2
temp2[:, 1, 2, i, :, :] = (temp2[:, 0, 1, i, :, :] + temp3[None, None, :]) * D ** 2 # 信息矩阵:theta k * D^2
temp2[:, 2, 0, i, :, :] = temp2[:, 0, 2, i, :, :]
temp2[:, 2, 1, i, :, :] = temp2[:, 1, 2, i, :, :]
temp2[:, 2, 2, i, :, :] = D ** 2 # 信息矩阵:D^2
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, :, :, i, :, :, :] = temp1[:, :, :, i, :, :, :] ** 2 * temp2[:, :, :, :, :, :]
else:
temp1[:, :, :, i, :, :, :] = (temp1[:, :, :, i, :, :, :] - temp1[:, :, :, i + 1, :, :, :]) ** 2 * temp2[:,
:, :, :,
:, :]
# 一阶偏导P/v除以Pjt,并计算information
temp1 = temp1 / pjt[:, None, None, :, :, :, :]
temp1 = np.sum(temp1, axis=3)
temp1 = temp1 * nk[None, None, None, :, :, :]
temp1 = np.sum(temp1, axis=5)
temp1 = np.sum(temp1, axis=4)
#temp1 = np.nan_to_num(temp1) + 10e-100
information = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_ac, NS_ac, a_ini.shape[1] - 1))
for i in range(c_item_ini.shape[1]):
information[:, i, :, :, :] = information[:, i, :, :, :] + temp1[:, :, :, :]
# 2.1d 计算Information_EHessian-参数dt部分
# information准备
# ac_dt偏导部分
temp1 = np.zeros((scores.shape[1], NS_dt, NS_ac, scores_trans[0].shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, None, None, :, None]
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, :, :, i, :, :] = temp1[:, :, :, :, i, :, :] + temp2[:, None, None, None, None, :]
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, None, None, :, None, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None, None, None])
temp1 = np.maximum(temp1,-25) #防止溢出
temp1 = np.minimum(temp1,25)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
# 求一阶偏导P/d
p_d = temp1[:, 0, 0, :, :, :, :]
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
p_d[:, i, :, :, :] = p_d[:, i, :, :, :] * D
else:
p_d[:, i, :, :, :] = (p_d[:, i, :, :, :] - p_d[:, i + 1, :, :, :]) * D
#p_d = np.nan_to_num(p_d) + 10e-100
# 求一阶偏导P/v
temp2 = np.zeros((scores.shape[1], NS_dt, NS_ac, a_ini.shape[1] - 1, gp_size, gp_size))
temp3 = x_nodes[:, 0]
for i in range(a_ini.shape[1] - 1):
temp2[:, 0, 0, i, :, :] = (temp2[:, 0, 0, i, :, :] + temp3[None, :, None]) * D
temp2[:, 0, 1, i, :, :] = (temp2[:, 0, 1, i, :, :] + temp3[None, None, :]) * D
temp2[:, 0, 2, i, :, :] = temp2[:, 0, 2, i, :, :] + D ** 2
temp2[:, 1, 0, i, :, :] = temp2[:, 0, 0, i, :, :]
temp2[:, 1, 1, i, :, :] = temp2[:, 0, 1, i, :, :]
temp2[:, 1, 2, i, :, :] = temp2[:, 0, 2, i, :, :]
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, :, :, i, :, :, :] = temp1[:, :, :, i, :, :, :] * temp2[:, :, :, :, :, :]
else:
temp1[:, :, :, i, :, :, :] = temp1[:, :, :, i, :, :, :] * temp2[:, :, :, :, :, :] - temp1[:, :, :, i + 1, :,
:, :] * temp2[:, :, :,
:, :, :]
# 一阶偏导P/v除以Pjt,并计算information
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, :, :, i, :, :, :] = temp1[:, :, :, i, :, :, :] / pjt[:, None, None, i, :, :, :]
else:
temp1[:, :, :, i, :, :, :] = temp1[:, :, :, i, :, :, :] / pjt[:, None, None, i, :, :, :] - temp1[:, :, :,
i + 1, :, :,
:] / pjt[:, None,
None, i + 1,
:, :, :]
temp1 = temp1 * p_d[:, None, None, :, :, :, :]
temp1 = np.sum(temp1, axis=0)
temp1 = temp1 * nk[None, None, None, :, :, :]
temp1 = np.sum(temp1, axis=5)
temp1 = - np.sum(temp1, axis=4)
#temp1 = np.nan_to_num(temp1) + 10e-100
information_ac_dt = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_dt, NS_ac, a_ini.shape[1] - 1))
for i in range(c_item_ini.shape[1]):
information_ac_dt[:, i, :, :, :] = information_ac_dt[:, i, :, :, :] + temp1[None, :, :, i, :]
# dt偏导部分
temp1 = np.zeros((scores.shape[1], NS_dt, NS_dt, scores_trans[0].shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
for i in range(NS_dt):
temp1[:, i, i, :, :, :, :] = temp1[:, i, i, :, :, :, :] + p_d[:, :, :, :, :] ** 2
for j in range(c_item_ini.shape[1]):
if j == c_item_ini.shape[1] - 1:
temp1[:, i, i, j, :, :, :] = temp1[:, i, i, j, :, :, :] / pjt[:, j, :, :, :]
else:
temp1[:, i, i, j, :, :, :] = temp1[:, i, i, j, :, :, :] * (
1 / pjt[:, j, :, :, :] + 1 / pjt[:, j + 1, :, :, :])
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, 0, 1, i, :, :, :] = temp1[:, 0, 1, i, :, :, :] + p_d[:, i, :, :, :]
else:
temp1[:, 0, 1, i, :, :, :] = temp1[:, 0, 1, i, :, :, :] + p_d[:, i, :, :, :] * p_d[:, i + 1, :, :, :]
temp1[:, 1, 0, :, :, :, :] = temp1[:, 0, 1, :, :, :, :]
temp1 = np.sum(temp1, axis=0)
temp1 = temp1 * nk[None, None, None, :, :, :]
temp1 = np.sum(temp1, axis=5)
temp1 = - np.sum(temp1, axis=4)
#temp1 = np.nan_to_num(temp1) + 10e-100
information_dt_dt = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_dt, NS_dt, a_ini.shape[1] - 1))
for i in range(c_item_ini.shape[1]):
information_dt_dt[:, i, :, :, :] = information_dt_dt[:, i, :, :, :] + temp1[None, :, :, i, :]
# 合并
temp1 = information
temp1 = np.concatenate((temp1, np.transpose(information_ac_dt, axes=[0, 1, 3, 2, 4])), axis=3)
temp2 = np.concatenate((information_ac_dt, information_dt_dt), axis=3)
information = np.concatenate((temp1, temp2), axis=2)
# EM算法- step 2.2 牛顿-拉夫逊迭代(N-S迭代,因计算效率,仅迭代1次)
parameter = np.zeros((scores.shape[1], scores_trans[0].shape[1], NS_dimention, a_ini.shape[1] - 1))
for i in range(a_ini.shape[1] - 1):
parameter[:, :, :, i] = np.linalg.solve(information[:, :, :, :, i], jacobian)
parameter = parameter * ujk[:, None, None, :] # 对有变化的无关参数置0
#parameter = np.nan_to_num(parameter) + 10e-100
# 取a1
temp1 = np.sum(parameter, axis=3)
temp1 = np.mean(temp1, axis=1)
temp1 = temp1[:, 0]
#temp1 = np.nan_to_num(temp1) + 10e-100
a_ini[:, 0] = a_ini[:, 0] - temp1
# 取ak
for i in range(a_ini.shape[1] - 1):
temp1 = parameter[:, :, :, i]
temp1 = np.mean(temp1, axis=1)
temp1 = temp1[:, 1]
#temp1 = np.nan_to_num(temp1) + 10e-100
a_ini[:, i + 1] = a_ini[:, i + 1] - temp1
#防止区分度过大,但与事实不符
#a_ini = np.minimum(a_ini,100)
#a_ini = np.maximum(a_ini,-100)
#a_ini = a_ini * np.concatenate((np.ones(size[0])[:,np.newaxis],ujk),axis=1)
# 取cj
temp1 = np.sum(parameter, axis=3)
temp1 = np.mean(temp1, axis=1)
temp1 = temp1[:, 2]
#temp1 = np.nan_to_num(temp1) + 10e-100
cj_item_ini[:,0] = cj_item_ini[:,0] - temp1
# 取dt
temp1 = np.sum(parameter, axis=3)
temp1 = np.mean(temp1, axis=0)
temp1 = temp1[:, 3]
#temp1 = np.nan_to_num(temp1) + 10e-100
dt_item_ini[:,0] = dt_item_ini[:,0] - temp1
dt_item_ini[0,0] = - np.sum(dt_item_ini[1:,0])
#数据输出合法性修改:nan,inf,-inf
a_ini = np.nan_to_num(a_ini)
cj_item_ini = np.nan_to_num(cj_item_ini)
dt_item_ini = np.nan_to_num(dt_item_ini)
return a_ini, cj_item_ini, dt_item_ini
##########EM算法 - whole step: 初始化各种参数开始迭代,或与上一次似然值比较,并评估迭代次数,并更新参数以继续迭代
def pi(subject_response):
# 数值准备,与下面计算jacobian矩阵定义temp1不同,待类编程改进
temp1 = np.zeros((scores.shape[1], scores_trans[0].shape[1], a_ini.shape[1] - 1, gp_size, gp_size))
# 给theta1赋值
temp2 = a_ini[:, 0] * x_nodes
temp2 = temp2.transpose()
temp1 = temp1 + temp2[:, None, None, :, None]
# 把thetak加上去
for i in range(a_ini.shape[1] - 1):
temp2 = a_ini[:, i + 1] * x_nodes
temp2 = temp2.transpose()
temp1[:, :, i, :, :] = temp1[:, :, i, :, :] + temp2[:, None, None, :]
# 加上截距并乘以D,然后计算Phi
temp2 = dt_item_ini[:, 0]
temp1 = temp1 + temp2[None, :, None, None, None]
temp2 = cj_item_ini[:, 0]
temp1 = D * (temp1 + temp2[:, None, None, None, None])
temp1 = np.maximum(temp1,-25) #防止溢出
temp1 = np.minimum(temp1,25)
temp1 = np.exp(temp1)
temp1 = temp1 / (1 + temp1)
#temp1 = np.nan_to_num(temp1) + 10e-100
# 计算likelihood
for i in range(c_item_ini.shape[1]):
if i == c_item_ini.shape[1] - 1:
temp1[:, i, :, :, :] = temp1[:, i, :, :, :]
else:
temp1[:, i, :, :, :] = temp1[:, i, :, :, :] - temp1[:, i + 1, :, :, :]
temp1 = np.maximum(temp1,10e-50)
temp1 = np.minimum(temp1,1-10e-50)
# 根据公式里Phi外面的元素计算pkeppa
temp2 = temp1 * subject_response[:, :, None, None, None] # 计算选项连乘01:因为是1或0的次方,实际是相乘再求和
temp2 = np.sum(temp2, axis=1) # 计算选项连乘02
temp2 = temp2 * ujk[:, :, None, None] # 计算题项连乘01:与选项同
temp2 = np.sum(temp2, axis=0) # 计算题项连乘02
temp2 = temp2 * x_weights[:, 0][None, None, :]
temp2 = np.sum(temp2, axis=2)
temp2 = np.prod(temp2, axis=0)
temp2 = temp2 * x_weights[:, 0]
temp2 = np.sum(temp2, axis=0)
pi = np.log(temp2)
pi = np.maximum(pi,10e-50)
pi = np.minimum(pi,1-10e-50)
return pi
#获取第i位被测的回答模式
subject_response = {}
for i in range(scores.shape[0]):
subject_response[i] = np.zeros((c_item_ini.shape[0],c_item_ini.shape[1]))
for j in scores_trans.keys():
subject_response[i][j,:] = scores_trans[j][i,:]
iteration = 100
change = 10e-5
log_likelihood_previous = np.zeros((scores.shape[0],1))
log_likelihood_next = np.zeros((scores.shape[0],1))
for i in range(iteration):
for j in range(scores.shape[0]):
if scores.shape[1] == 2:
log_likelihood_previous = pi(subject_response[j]) * subject_ri[j]
else:
log_likelihood_previous = pi(subject_response[j])
a_ini,cj_item_ini,dt_item_ini = EM_calculation(a_ini,cj_item_ini,dt_item_ini,subject_response)
for j in range(scores.shape[0]):
if scores.shape[1] == 2:
log_likelihood_next = pi(subject_response[j]) * subject_ri[j]
else:
log_likelihood_next = pi(subject_response[j])
change_temp = abs(np.sum(log_likelihood_previous,axis=0) - np.sum(log_likelihood_next,axis=0))
print('请等待,这是EM算法第',i+1,'次循环,最多',iteration,'次循环')
print('当前残差:',change_temp,',与EM算法停止残差标准:',change)
if change_temp < change:
break
#取因素负荷
alpha_factorloading = a_ini + 1e-6
alpha_factorloading = ((alpha_factorloading ** -4 + 4) ** 0.5 - alpha_factorloading ** -2) / 2
alpha_factorloading = alpha_factorloading * np.concatenate((np.ones(size[0])[:,np.newaxis],ujk),axis=1)
temp1 = np.var(scores)
alpha_factorloading = alpha_factorloading / temp1
############标准化后做斜交旋转############
#alpha_factorloading = np.maximum(alpha_factorloading,0.001)
#alpha_factorloading = np.minimum(alpha_factorloading,0.999)
#alpha_factorloading = alpha_factorloading * np.concatenate((np.ones(size[0])[:,np.newaxis],ujk),axis=1)
#alpha_factorloading = np.round(alpha_factorloading,decimals=3)
np.savetxt('d:/alpha.csv',alpha_factorloading,delimiter=',',newline='\n')
###end估计参数###