-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathTaskForChineseNER.py
executable file
·313 lines (288 loc) · 13.9 KB
/
TaskForChineseNER.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import sys
from copy import deepcopy
sys.path.append('../')
from transformers import BertTokenizer
from model import BertConfig
from model import BertForTokenClassification
from utils import LoadChineseNERDataset
from utils import logger_init
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import accuracy_score, classification_report
import logging
import os
import torch
import time
class ModelConfig:
def __init__(self):
self.project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
self.dataset_dir = os.path.join(self.project_dir, 'data', 'ChineseNER')
self.pretrained_model_dir = os.path.join(self.project_dir, "bert_base_chinese")
self.vocab_path = os.path.join(self.pretrained_model_dir, 'vocab.txt')
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.train_file_path = os.path.join(self.dataset_dir, 'example_train.txt')
self.val_file_path = os.path.join(self.dataset_dir, 'example_dev.txt')
self.test_file_path = os.path.join(self.dataset_dir, 'example_test.txt')
self.model_save_dir = os.path.join(self.project_dir, 'cache')
self.model_save_name = "ner_model.pt"
self.writer = SummaryWriter("runs")
self.logs_save_dir = os.path.join(self.project_dir, 'logs')
self.split_sep = ' '
self.is_sample_shuffle = True
self.batch_size = 12
self.max_sen_len = None
self.epochs = 10
self.learning_rate = 1e-5
self.model_val_per_epoch = 2
self.entities = {'O': 0, 'B-ORG': 1, 'B-LOC': 2, 'B-PER': 3, 'I-ORG': 4, 'I-LOC': 5, 'I-PER': 6}
self.num_labels = len(self.entities)
self.ignore_idx = -100
logger_init(log_file_name='ner', log_level=logging.DEBUG,
log_dir=self.logs_save_dir)
if not os.path.exists(self.model_save_dir):
os.makedirs(self.model_save_dir)
# 把原始bert中的配置参数也导入进来
bert_config_path = os.path.join(self.pretrained_model_dir, "config.json")
bert_config = BertConfig.from_json_file(bert_config_path)
for key, value in bert_config.__dict__.items():
self.__dict__[key] = value
# 将当前配置打印到日志文件中
logging.info(" ### 将当前配置打印到日志文件中 ")
for key, value in self.__dict__.items():
logging.info(f"### {key} = {value}")
def accuracy(logits, y_true, ignore_idx=-100):
"""
:param logits: [src_len,batch_size,num_labels]
:param y_true: [src_len,batch_size]
:param ignore_idx: 默认情况为-100
:return:
e.g.
y_true = torch.tensor([[-100, 0, 0, 1, -100],
[-100, 2, 0, -100, -100]]).transpose(0, 1)
logits = torch.tensor([[[0.5, 0.1, 0.2], [0.5, 0.4, 0.1], [0.7, 0.2, 0.3], [0.5, 0.7, 0.2], [0.1, 0.2, 0.5]],
[[0.3, 0.2, 0.5], [0.7, 0.2, 0.4], [0.8, 0.1, 0.3], [0.9, 0.2, 0.1], [0.1, 0.5, 0.2]]])
logits = logits.transpose(0, 1)
print(accuracy(logits, y_true, -100)) # (0.8, 4, 5)
"""
y_pred = logits.transpose(0, 1).argmax(axis=2).reshape(-1).tolist()
# 将 [src_len,batch_size,num_labels] 转成 [batch_size, src_len,num_labels]
y_true = y_true.transpose(0, 1).reshape(-1).tolist()
real_pred, real_true = [], []
for item in zip(y_pred, y_true):
if item[1] != ignore_idx:
real_pred.append(item[0])
real_true.append(item[1])
return accuracy_score(real_true, real_pred), real_true, real_pred
def train(config):
model = BertForTokenClassification(config,
config.pretrained_model_dir)
model_save_path = os.path.join(config.model_save_dir,
config.model_save_name)
global_steps = 0
if os.path.exists(model_save_path):
checkpoint = torch.load(model_save_path)
global_steps = checkpoint['last_epoch']
loaded_paras = checkpoint['model_state_dict']
model.load_state_dict(loaded_paras)
logging.info("## 成功载入已有模型,进行追加训练......")
data_loader = LoadChineseNERDataset(
entities=config.entities,
num_labels=config.num_labels,
ignore_idx=config.ignore_idx,
vocab_path=config.vocab_path,
tokenizer=BertTokenizer.from_pretrained(
config.pretrained_model_dir).tokenize,
batch_size=config.batch_size,
max_sen_len=config.max_sen_len,
split_sep=config.split_sep,
max_position_embeddings=config.max_position_embeddings,
pad_index=config.pad_token_id,
is_sample_shuffle=config.is_sample_shuffle)
train_iter, test_iter, val_iter = \
data_loader.load_train_val_test_data(train_file_path=config.train_file_path,
val_file_path=config.val_file_path,
test_file_path=config.test_file_path,
only_test=False)
model = model.to(config.device)
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
model.train()
max_acc = 0
for epoch in range(config.epochs):
losses = 0
start_time = time.time()
for idx, (sen, token_ids, labels) in enumerate(train_iter):
token_ids = token_ids.to(config.device)
labels = labels.to(config.device)
padding_mask = (token_ids == data_loader.PAD_IDX).transpose(0, 1)
loss, logits = model(input_ids=token_ids, # [src_len, batch_size]
attention_mask=padding_mask, # [batch_size,src_len]
token_type_ids=None,
position_ids=None,
labels=labels) # [src_len, batch_size]
# logit: [src_len, batch_size, num_labels]
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
global_steps += 1
acc, _, _ = accuracy(logits, labels, config.ignore_idx)
if idx % 20 == 0:
logging.info(f"Epoch: {epoch}, Batch[{idx}/{len(train_iter)}], "
f"Train loss :{loss.item():.3f}, Train acc: {round(acc, 5)}")
config.writer.add_scalar('Training/Loss', loss.item(), global_steps)
config.writer.add_scalar('Training/Acc', acc, global_steps)
if idx % 100 == 0:
show_result(sen[:10], logits[:, :10], token_ids[:, :10], config.entities)
end_time = time.time()
train_loss = losses / len(train_iter)
logging.info(f"Epoch: [{epoch + 1}/{config.epochs}],"
f" Train loss: {train_loss:.3f}, Epoch time = {(end_time - start_time):.3f}s")
if (epoch + 1) % config.model_val_per_epoch == 0:
acc = evaluate(config, val_iter, model, data_loader)
logging.info(f"Accuracy on val {acc:.3f}")
config.writer.add_scalar('Testing/Acc', acc, global_steps)
if acc > max_acc:
max_acc = acc
state_dict = deepcopy(model.state_dict())
torch.save({'last_epoch': global_steps,
'model_state_dict': state_dict},
model_save_path)
def evaluate(config, val_iter, model, data_loader):
model.eval()
real_true, real_pred = [], []
show = True
with torch.no_grad():
for idx, (sen, token_ids, labels) in enumerate(val_iter):
token_ids = token_ids.to(config.device)
labels = labels.to(config.device)
padding_mask = (token_ids == data_loader.PAD_IDX).transpose(0, 1)
logits = model(input_ids=token_ids, # [src_len, batch_size]
attention_mask=padding_mask, # [batch_size,src_len]
token_type_ids=None,
position_ids=None,
labels=None) # [src_len, batch_size]
# logits :[src_len, batch_size, num_labels]
if show:
show_result(sen[:10], logits[:, :10], token_ids[:, :10], config.entities)
show = False
_, t, p = accuracy(logits, labels, config.ignore_idx)
real_true += t
real_pred += p
model.train()
target_names = list(config.entities.keys())
logging.info(f"\n{classification_report(real_true, real_pred, target_names=target_names)}")
return accuracy_score(real_true, real_pred)
def get_ner_tags(logits, token_ids, entities, SEP_IDX=102):
"""
:param logits: [src_len,batch_size,num_samples]
:param token_ids: # [src_len,batch_size]
:return:
e.g.
logits = torch.tensor([[[0.4, 0.7, 0.2],[0.5, 0.4, 0.1],[0.1, 0.2, 0.3],[0.5, 0.7, 0.2],[0.1, 0.2, 0.5]],
[[0.3, 0.2, 0.5],[0.7, 0.8, 0.4],[0.1, 0.1, 0.3],[0.9, 0.2, 0.1],[0.1, 0.5,0.2]]])
logits = logits.transpose(0, 1) # [src_len,batch_size,num_samples]
token_ids = torch.tensor([[101, 2769, 511, 102, 0],
[101, 56, 33, 22, 102]]).transpose(0, 1) # [src_len,batch_size]
labels, probs = get_ner_tags(logits, token_ids, entities)
[['O', 'B-LOC'], ['B-ORG', 'B-LOC', 'O']]
[[0.5, 0.30000001192092896], [0.800000011920929, 0.30000001192092896, 0.8999999761581421]]
"""
# entities = {'O': 0, 'B-ORG': 1, 'B-LOC': 2, 'B-PER': 3, 'I-ORG': 4, 'I-LOC': 5, 'I-PER': 6}
label_list = list(entities.keys())
logits = logits[1:].transpose(0, 1) # [batch_size,src_len-1,num_samples]
prob, y_pred = torch.max(logits, dim=-1) # prob, y_pred: [batch_size,src_len-1]
token_ids = token_ids[1:].transpose(0, 1) # [ batch_size,src_len-1], 去掉[cls]
assert y_pred.shape == token_ids.shape
labels = []
probs = []
for sample in zip(y_pred, token_ids, prob):
tmp_label, tmp_prob = [], []
for item in zip(*sample):
if item[1] == SEP_IDX: # 忽略最后一个[SEP]字符
break
tmp_label.append(label_list[item[0]])
tmp_prob.append(item[2].item())
labels.append(tmp_label)
probs.append(tmp_prob)
return labels, probs
def pretty_print(sentences, labels, entities):
"""
:param sentences:
:param labels:
:param entities:
:return:
e.g.
labels = [['B-PER','I-PER', 'O','O','O','O','O','O','O','O','O','O','B-LOC','I-LOC','B-LOC','I-LOC','O','O','O','O'],
['B-LOC','I-LOC','O','B-LOC','I-LOC','O','B-LOC','I-LOC','I-LOC','O','B-LOC','I-LOC','O','O','O','B-PER','I-PER','O','O','O','O','O','O']]
sentences=["涂伊说,如果有机会他想去赤壁看一看!",
"丽江、大理、九寨沟、黄龙等都是涂伊想去的地方!"]
entities = {'O': 0, 'B-ORG': 1, 'B-LOC': 2, 'B-PER': 3, 'I-ORG': 4, 'I-LOC': 5, 'I-PER': 6}
句子:涂伊说,如果有机会他想去黄州赤壁看一看!
涂伊: PER
黄州: LOC
赤壁: LOC
句子:丽江、大理、九寨沟、黄龙等都是涂伊想去的地方!
丽江: LOC
大理: LOC
九寨沟: LOC
黄龙: LOC
涂伊: PER
"""
sep_tag = [tag for tag in list(entities.keys()) if 'I' not in tag]
result = []
for sen, label in zip(sentences, labels):
logging.info(f"句子:{sen}")
last_tag = None
for item in zip(sen + "O", label + ['O']):
if item[1] in sep_tag: #
if len(result) > 0:
entity = "".join(result)
logging.info(f"\t{entity}: {last_tag.split('-')[-1]}")
result = []
if item[1] != 'O':
result.append(item[0])
last_tag = item[1]
else:
result.append(item[0])
last_tag = item[1]
def show_result(sentences, logits, token_ids, entities):
labels, _ = get_ner_tags(logits, token_ids, entities)
pretty_print(sentences, labels, entities)
def inference(config, sentences=None):
model = BertForTokenClassification(config,
config.pretrained_model_dir)
model_save_path = os.path.join(config.model_save_dir,
config.model_save_name)
if os.path.exists(model_save_path):
checkpoint = torch.load(model_save_path)
loaded_paras = checkpoint['model_state_dict']
model.load_state_dict(loaded_paras)
logging.info("## 成功载入已有模型,进行追加训练......")
else:
raise ValueError(f" 本地模型{model_save_path}不存在,请先训练模型。")
model = model.to(config.device)
data_loader = LoadChineseNERDataset(
entities=config.entities,
num_labels=config.num_labels,
ignore_idx=config.ignore_idx,
vocab_path=config.vocab_path,
tokenizer=BertTokenizer.from_pretrained(
config.pretrained_model_dir).tokenize,
batch_size=config.batch_size,
max_sen_len=config.max_sen_len,
split_sep=config.split_sep,
max_position_embeddings=config.max_position_embeddings,
pad_index=config.pad_token_id,
is_sample_shuffle=config.is_sample_shuffle)
_, token_ids, _ = data_loader.make_inference_samples(sentences)
token_ids = token_ids.to(config.device)
padding_mask = (token_ids == data_loader.PAD_IDX).transpose(0, 1)
logits = model(input_ids=token_ids, # [src_len, batch_size]
attention_mask=padding_mask) # [batch_size,src_len]
show_result(sentences, logits, token_ids, config.entities)
if __name__ == '__main__':
config = ModelConfig()
train(config)
sentences = ['智光拿出石壁拓文为乔峰详述事情始末,乔峰方知自己原本姓萧,乃契丹后族。',
'当乔峰问及带头大哥时,却发现智光大师已圆寂。',
'乔峰、阿朱相约找最后知情人康敏问完此事后,就到塞外骑马牧羊,再不回来。']
inference(config, sentences)