-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathaom.tex
361 lines (291 loc) · 17.2 KB
/
aom.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
%! TeX program = tectonic
\documentclass[nobib, a4paper]{tufte-book}
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{2}
\usepackage{microtype, ifluatex, ifxetex}
%Next block avoids bug, from http://tex.stackexchange.com/a/200725/1913
\ifx\ifxetex\ifluatex\else % if lua- or xelatex http://tex.stackexchange.com/a/140164/1913
\usepackage{fontspec}
\setmainfont[Renderer=Basic, Scale=0.90]{OpenDyslexic}
\setsansfont[Renderer=Basic, Scale=0.90]{OpenDyslexic}
\setmonofont[Renderer=Basic]{OpenDyslexicMono}
\setmainfont[Renderer=Basic, Numbers=OldStyle, Scale = 1.0]{TeX Gyre Pagella}
\setsansfont[Renderer=Basic, Scale=0.90]{TeX Gyre Heros}
\setmonofont[Renderer=Basic]{TeX Gyre Cursor}
% \setmainfont[Mapping=tex-text,Numbers=OldStyle]{Bembo Std}
% \setsansfont[Mapping=tex-text,Numbers=OldStyle,Scale=MatchLowercase]{Gill Sans}
% \setmonofont[Mapping=tex-text,Scale=MatchLowercase]{DejaVu Sans Mono}
\renewcommand{\textls}[2][5]{%
\begingroup\addfontfeatures{LetterSpace=#1}#2\endgroup
}
\renewcommand{\allcapsspacing}[1]{\textls[15]{#1}}
\renewcommand{\smallcapsspacing}[1]{\textls[10]{#1}}
\renewcommand{\allcaps}[1]{\textls[15]{\MakeTextUppercase{#1}}}
\renewcommand{\smallcaps}[1]{\smallcapsspacing{\scshape\MakeTextLowercase{#1}}}
\renewcommand{\textsc}[1]{\smallcapsspacing{\textsmallcaps{#1}}}
\fi
\usepackage{graphicx} % allow embedded images
\setkeys{Gin}{width=\linewidth,totalheight=\textheight,keepaspectratio}
\graphicspath{{images/}} % set of paths to search for images
\usepackage{amsmath,amssymb,amsthm,amsfonts,ulem,tikz} % extended mathematics
\usepackage{booktabs} % book-quality tables
\usepackage{units} % non-stacked fractions and better unit spacing
\usepackage{multicol} % multiple column layout facilities
\usepackage{fancyvrb,xcolor} % extended verbatim environments
\fvset{fontsize=\normalsize}% default font size for fancy-verbatim environments
\usepackage{tikz,tikz-cd,quiver,bbm,mathbbol}
\DeclareSymbolFontAlphabet{\mathbbl}{bbold} %let's you use \mathbbl{k} for a field k
\hypersetup{colorlinks} %puts color to hyperlinks
\setcounter{secnumdepth}{2}
\usepackage{enumerate}
\usepackage{mathabx}
\usepackage{mathtools}
\mathtoolsset{showonlyrefs, mathic}
\usepackage[english]{babel}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
urlcolor=Cerulean,
linkcolor = ForestGreen,
}
\usepackage[toc]{appendix}
\newcounter{dummy} %so that \pageref works properly
\usepackage[absolute]{textpos}
\setlength{\TPHorizModule}{\paperwidth} \setlength{\TPVertModule}{\paperheight}
\usetikzlibrary{decorations.pathreplacing,} %for braces with itemize
\newcommand{\tikzmark}[1]{\tikz[baseline={(#1.base)},overlay,remember picture] \node[outer sep=0pt, inner sep=0pt] (#1) {\phantom{A}};}
\usetikzlibrary{cd}
% Standardize command font styles and environments
\newcommand{\doccmd}[1]{\texttt{\textbackslash#1}}% command name -- adds backslash automatically
\newcommand{\docopt}[1]{\ensuremath{\langle}\textrm{\textit{#1}}\ensuremath{\rangle}}% optional command argument
\newcommand{\docarg}[1]{\textrm{\textit{#1}}}% (required) command argument
\newcommand{\docenv}[1]{\textsf{#1}}% environment name
\newcommand{\docpkg}[1]{\texttt{#1}}% package name
\newcommand{\doccls}[1]{\texttt{#1}}% document class name
\newcommand{\docclsopt}[1]{\texttt{#1}}% document class option name
\newenvironment{docspec}{\begin{quote}\noindent}{\end{quote}}% command specification environment
\newcommand{\adj}[4]{\begin{tikzcd}[ampersand replacement=\&, column sep=4ex]
#1 \colon #2 \ar[yshift=+.6ex]{r}
\& #3 \colon #4 \ar[yshift=-.4ex]{l}
\end{tikzcd}}
\usepackage{etoolbox}
\newcommand{\addQEDstyle}[2]{
\AtBeginEnvironment{#1}{\pushQED{\qed}\renewcommand{\qedsymbol}{#2}}
\AtEndEnvironment{#1}{\popQED}
}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\addQEDstyle{definition}{$\lozenge$}
\newtheorem{conjecture}[theorem]{Conjecture}
\addQEDstyle{conjecture}{$(\clubsuit)uit$}
\theoremstyle{remark}
\newtheorem{example}[theorem]{Example}
\addQEDstyle{example}{$\lozenge$}
\newtheorem{remark}[theorem]{Remark}
\addQEDstyle{remark}{$\lozenge$}
\newtheorem{notation}[theorem]{Notation}
\addQEDstyle{notation}{$\lozenge$}
\usepackage{oplotsymbl}
\newtheorem{exercise}[theorem]{Exercise}
\addQEDstyle{exercise}{$\starlet$}
\newtheorem{problem}[theorem]{Problem}
\addQEDstyle{problem}{$\starlet$}
\usepackage[
type={CC},
modifier={by-nc-sa},
version={4.0},
]{doclicense}
\usepackage[dvipsnames]{xcolor}
\usepackage[many]{tcolorbox}
%\usepackage[numbers, sort]{natbib}
\usepackage[style=alphabetic,natbib=true,sorting=anyt]{biblatex}
%\setlength{\bibsep}{3pt}
%\renewcommand{\bibfont}{\small}
\usepackage{doi}
\addbibresource{aom.bib}
\newcommand{\cA}{\mathcal{A}}
\newcommand{\cC}{\mathcal{C}}
\newcommand{\cD}{\mathcal{D}}
\newcommand{\cE}{\mathcal{E}}
\newcommand{\cF}{\mathcal{F}}
\newcommand{\cL}{\mathcal{L}}
\newcommand{\cO}{\mathcal{O}}
\newcommand{\cH}{\mathcal{H}}
\newcommand{\cI}{\mathcal{I}}
\newcommand{\cT}{\mathcal{T}}
\newcommand{\cB}{\mathcal{B}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cX}{\mathcal{X}}
%\newcommand{\bC}{\mathbb{C}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\RP}{\mathbb{RP}}
\newcommand{\bS}{\mathbb{S}}
\newcommand{\bT}{\mathbb{T}}
\newcommand{\fX}{\mathfrak{X}}
\newcommand{\fg}{\mathfrak{g}}
\newcommand{\fh}{\mathfrak{h}}
\newcommand{\bx}{\bm{x}}
\newcommand{\bp}{\bm{p}}
\newcommand{\bv}{\bm{v}}
\DeclareFontFamily{U}{MnSymbolC}{}
\DeclareSymbolFont{MnSyC}{U}{MnSymbolC}{m}{n}
\DeclareFontShape{U}{MnSymbolC}{m}{n}{
<-6> MnSymbolC5
<6-7> MnSymbolC6
<7-8> MnSymbolC7
<8-9> MnSymbolC8
<9-10> MnSymbolC9
<10-12> MnSymbolC10
<12-> MnSymbolC12}{}
\DeclareMathSymbol{\iprod}{\mathbin}{MnSyC}{'270}
\let\d\relax
\DeclareMathOperator{\d}{d}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\diff}{Diff}
\DeclareMathOperator{\Id}{Id}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\diag}{diag}
\let\mod\relax
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\Vol}{Vol}
\DeclareMathOperator{\eval}{eval}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\Alt}{Alt}
\DeclareMathOperator{\ad}{ad}
\DeclareMathOperator{\Ad}{Ad}
\newcommand{\todo}[1]{\footnote{\textcolor{red}{#1}}}
\newcommand{\TODO}{\textcolor{red}{\hrulefill}}
\title{Analysis\\ \noindent
on\\ \noindent
Manifolds
}
\author{Marcello Seri}
\publisher{Bernoulli Institute\\ \noindent
%A.Y. 2022--2023\\ \noindent
\MakeLowercase{\texttt{[email protected]}}
}
\begin{document}
\maketitlepage
\newpage
\begin{fullwidth}
~\vfill
\thispagestyle{empty}
\setlength{\parindent}{0pt}
\setlength{\parskip}{\baselineskip}
Copyright \copyright\ \the\year\ \thanklessauthor
\par Version 1.6.6 -- \today
\vfill
\small{\doclicenseThis}
\end{fullwidth}
\pagenumbering{roman}
\tableofcontents
\cleardoublepage
\pagenumbering{arabic}
\chapter*{Introduction}
\addcontentsline{toc}{chapter}{Introduction}
At the entry for \emph{Mathematical analysis}, our modern source of truth---Wikipedia---says
\begin{quotation}
\emph{Mathematical analysis} is the branch of mathematics dealing with limits and related theories, such as differentiation, integration, measure, infinite series, and analytic functions.
These theories are usually studied in the context of real numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).
\end{quotation}
\newthought{In this sense}, our course will focus on generalizing the concepts of differentiation, integration and, up to some extent, differential equations to spaces that are more general than the standard Euclidean space.
We will do this by trying to make everything look Euclidean and, in this sense, the Euclidean space $\R^n$ is going to be \emph{the} prototype of all manifolds: it won't just be our simplest example, we will see that locally every manifold looks like a Euclidean space.
Euclidean spaces, and the Riemannian charts that you may have already encountered in the Geometry course, have a very strong property: they can be described with a set of \emph{global} coordinates.
Even though this means that all computations are explicit, it does make it harder to distinguish \emph{intrinsic}\footnote{I.e. independent from the choice of coordinates.} concepts.
Manifolds will force our hand to work in a \emph{coordinate-free} setting and isolate these instrisic concepts.
We will see that this will unleash a surprising power that will allow us to lay the foundation for a lot of the mathematics that will come in the rest of the curriculum.
These notes will focus on fundamental ideas of differential geometry, in particular we will discuss manifolds, differential forms, integration, with a wink to the study of vector fields as dynamical systems and topology via cohomology.
If the time permits it, we may give a brief tour of Lie groups and Lie algebras, Riemannian metrics and the notion of curvature, or distributions and Frobenius theorem, depending on the preferences expressed in class.
Some of these topics are already present in appendices to the notes, other will be progressively added in due course.
Throughout the course and these notes, I will try to give particular emphasis on the usefulness of these topics in the mathematics of mechanics and their relevance in certain aspects of topology and field theory.
The course relies \emph{heavily} on your knowledge of linear and multilinear algebra, multivariable analysis and dynamical systems.
This should not come as a surprise: differential geometry studies the natural space in which analysis, in the sense of derivation and integration, can be performed, and was born together with classical mechanics, somehow as unique discipline, before these started diverging on their own paths.
An old mathematical joke says that
\begin{quote}
differential geometry is the study of properties that are invariant under change of notation.
\end{quote}
Sadly, this is \emph{funny because it is alarmingly close to the truth}\footnote{Cit. Lee~\cite{book:lee}.}.
You will soon see that different references use different notations for just about everything we are going to discuss.
I'll try to stick to the ones you used in the past courses when possible, falling back to~\cite{book:lee} and~\cite{book:tu} and to my personal preference when the latter disagree.
\newthought{These lecture notes} are by no means comprehensive.
As complementery sources you can use the textbook~\cite{book:tu} or the extensive reference~\cite{book:lee}.
You should have access to both books via the University library and, in addition, Lee's ebook can be downloaded via the University proxy on \href{https://link.springer.com/book/10.1007/978-1-4419-9982-5}{SpringerLink}.
The book~\cite{book:McInerney} is a nice compact companion that develops most of the concepts of the course in the specific case of $\R^n$ and could provide further examples and food for thought.
The books \cite{book:nicolaescu}\footnote{Beware of typos, there are many.}, \cite{book:crane} and \cite{lectures:nanda}, freely available from the authors' website, are not really suitable as references for this course but provide fantastic resources for the readers that want to dig further and see where the material discussed in the course can lead.
Finally, a colleague mentioned~\cite{book:lang}. I don't have experience with this book but from a brief look it seems to follow a similar path as these lecture notes, so it might provide yet an alternative reference after all.
The idea for the cut that I want to give to this course was inspired by the online \href{https://www.video.uni-erlangen.de/course/id/242}{Lectures on the Geometric Anatomy of Theoretical Physics} by Frederic Schuller, by the lecture notes of Stefan Teufel's Classical Mechanics course~\cite{lectures:teufel} (in German), by the classical mechanics book by Arnold~\cite{book:arnold} and by the Analysis of Manifolds chapter in~\cite{book:thirring}.
In some sense I would like this course to provide the introduction to geometric analysis that I wish was there when I prepared my \href{https://www.mseri.me/lecture-notes-hamiltonian-mechanics/}{first edition} of the Hamiltonian mechanics course (see also my lecture notes for that course \cite{lectures:seri:hm}).
In addition to the reference above, these lecture notes have found deep inspiration from~\cite{lectures:merry,lectures:hitchin} (all freely downloadable from the respective authors' websites), and from the book~\cite{book:abrahammarsdenratiu}.\medskip
I am extremely grateful to Martijn Kluitenberg for his careful reading of the notes and his invaluable suggestions, comments and corrections, and to Bram Brongers\footnote{You can also have a look at \href{https://fse.studenttheses.ub.rug.nl/25344/}{his bachelor thesis} to learn more about some interesting advanced topics in differential geometry.} for his comments, corrections and the appendices that he contributed to these notes.\medskip
Many thanks also to the following people for their comments and for reporting a number of misprints and corrections: Jamara Admiraal, Wojtek Anyszka, Bhavya Bhikha, Huub Bouwkamp, Anna de Bruijn, Daniel Cortlid, Harry Crane, Fionn Donogue, Jordan van Ekelenburg, Brian Elsinga, Hanneke van Harten, Martin Daan van IJcken, Mollie Jagoe Brown, Remko de Jong, Aron Karakai, Hanna Karwowska, Wietze Koops, Henrieke Krijgsheld, Justin Lin, Valeriy Malikov, Mar\'ia Diaz Marrero, Aiva Misieviciute, Levi Moes, Nicol\'as Moro, Alexandru Oprea, Magnus Petz, Jorian Pruim, Luuk de Ridder, Lisanne Sibma, Marit van Straaten, Bo Tielman, Dave Verweg, Ashwin Vishwakarma, Lars Wieringa, Federico Zadra, Tijmen van der Ree, and Jesse van der Zeijden.
\mainmatter
\chapter*{Einstein summation convention}
\addcontentsline{toc}{chapter}{Einstein summation convention}
As will become clear soon, sums of the type $\sum_i x^i e_i$ are unavoidably appearing all over the place when working on manifolds.
Therefore, throughout these notes we will apply the \emph{Einstein summation convention}: if the same index\footnote{For example, $i$ in the summation $\sum_i x^i e_i$.} appears exactly twice in a monomial term, once in the lower and once in the upper index position, then that term is understood to be summed over all possible values of that index\footnote{Usually from $1$ to the dimension of the space in question.}.
For instance, the expression
\begin{equation}
a^{ij}b_l^k e_i e_k
\end{equation}
is a shorthand for
\begin{equation}
\sum_{i,k} a^{ij}b_l^k e_i e_k.
\end{equation}
In general, we will use lower indices for basis of vector spaces\footnote{E.g., $(e_1,\ldots,e_n)$ could be the standard basis of $\R^n$.}, and upper indices for the components of a vector with respect to a basis\footnote{E.g., the $i$th-coordinate $x^i$ of $x\in\R^n$.}.
\marginnote[10pt]{Since the coordinates of a point $x\in\R^n$ are also its components with respect to the standard basis $(e_1, \ldots, e_n)$, for consistency they will be denoted $(x^1, \ldots, x^n)$ with upper indices.}
Note that an upper index ``in the denominator'' is regarded as a lower index, so the following are to be considered equivalent:
\begin{equation}
\sum_{i} a^i \frac{\partial}{\partial x^i} = a^i \frac{\partial}{\partial x^i}.
\end{equation}
In fact, the expressions below are all equivalent and commonly used in the differential geometry literature:
\begin{equation}
\sum_{i} a^i \frac{\partial}{\partial x^i} = a^i \frac{\partial}{\partial x^i} = a^i \partial_{x^i} = a^i \partial_i.
\end{equation}
\chapter{Manifolds}\label{ch:manifolds}
\input{1-manifolds}
\chapter{Tangent bundle}\label{ch:2}
\input{2-tangentbdl}
\chapter{Submanifolds}\label{ch:sub}
\input{2b-submanifolds}
\chapter{Vector fields}\label{ch:vf}
\input{3-vectorfields}
\chapter{Vector bundles}\label{sec:vectorbundle}
\input{2c-vectorbdl}
\chapter{Cotangent bundle}\label{cg:ctb}
\input{4-cotangentbdl}
\chapter{Tensor fields}\label{cg:tf}
\input{5-tensors}
\chapter{Differential forms}
\input{6-differentiaforms}
\chapter{De Rham cohomology and Poincar\'e lemma}
\input{6b-cohomology}
\chapter{Integration of forms}
\input{7-integration}
\begin{appendices}
\chapter{Lie groups and Lie algebras}\label{appendix:Lie}
\input{3b-liegroups}
\input{appendices}
\end{appendices}
% \begin{appendices}
% \chapter{Solution to selected exercises}
% \section{Chapter~\ref{ch:manifolds}}
% \newthought{Exercise~\ref{exe:rntopsp}.}
% \begin{enumerate}
% \item[] Hausdorff. For $x\neq y\in\R^n$, let $\epsilon = d(x,y)/3$.
% Then the two balls $B_x(\epsilon) := \{z\in X \;\mid\; d(z,x)<\epsilon\}$ and $B_y(\epsilon)$ are disjoint open sets containing $x$ and $y$ respectively.
% \item[] Second countable. As countable basis for the topology we can take the open balls $B_\epsilon(x)$ with rational radii $\epsilon\in\Q$ and centers $x\in\Q^n$.
% \end{enumerate}
% \end{appendices}
\printbibliography
\addcontentsline{toc}{chapter}{Bibliography}
\end{document}