-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathustd_functional.h
260 lines (210 loc) · 8.13 KB
/
ustd_functional.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// This implementation of functionals for low-resource AVRs
// is completely based on: project function-avr by
// https://github.com/winterscar, see:
// https://github.com/winterscar/functional-avr
/*! \file ustd_functional.h
std::function<> equivalent for low-resource AVRs
ustd_functional.h is a minimal, no-dependency implementation of functionals
for AVRs, taken from project:
<a href="https://github.com/winterscar/functional-avr">functional-avr</a> by winterscar.
Make sure to provide the
<a href="https://github.com/muwerk/ustd/blob/master/README.md">required platform
define</a> before including ustd headers.
Note: if you are only interested in using functionals, it might be better
to directly use project <a href="https://github.com/winterscar/functional-avr">functional-avr</a> by
winterscar.
## An example:
~~~{.cpp}
#define __UNO__ 1 // Appropriate platform define required
// Note: only __ARDUINO__ is supported.
// __ATTINY__ is no longer supported.
// All other platforms should use std::function<>
// from standard library.
#include <ustd_functional.h>
#if defined (__ARDUINO__)
typedef ustd::function<void()> T_TASK;
#else // use standard library instead:
typedef std::function<void()> T_TASK;
#endif
void task(T_TASK *tsk) {
tsk();
}
class Something {
Something() {
auto ft = [=]() { this->callback(); };
task(ft);
}
void callback() {
// do something
}
}
~~~
*/
#pragma once
#if defined __ATTINY__ || defined(__ARDUINO__) || defined(__ARM__) || defined(__RISC_V__)
// ATTINY is broken currently.
// using size_t = decltype(sizeof(int));
#ifdef __ATTINY__
#include <Arduino.h>
using nullptr_t = decltype(nullptr);
#endif
// NEW_H is some new Arduino implementation of new operator
#if !defined(NEW_H) && !defined(USTD_FEATURE_SUPPORTS_NEW_OPERATOR)
inline void *operator new(size_t size, void *ptr) {
return ptr;
}
#endif
namespace ustd {
template <class T> struct tag { using type = T; };
template <class Tag> using type_t = typename Tag::type;
// using size_t=decltype(sizeof(int));
// move
template <class T> T &&move(T &t) {
return static_cast<T &&>(t);
}
// forward
template <class T> struct remove_reference : tag<T> {};
template <class T> struct remove_reference<T &> : tag<T> {};
template <class T> using remove_reference_t = type_t<remove_reference<T>>;
template <class T> T &&forward(remove_reference_t<T> &t) {
return static_cast<T &&>(t);
}
template <class T> T &&forward(remove_reference_t<T> &&t) {
return static_cast<T &&>(t);
}
// decay
template <class T> struct remove_const : tag<T> {};
template <class T> struct remove_const<T const> : tag<T> {};
template <class T> struct remove_volatile : tag<T> {};
template <class T> struct remove_volatile<T volatile> : tag<T> {};
template <class T> struct remove_cv : remove_const<type_t<remove_volatile<T>>> {};
template <class T> struct decay3 : remove_cv<T> {};
template <class R, class... Args> struct decay3<R(Args...)> : tag<R (*)(Args...)> {};
template <class T> struct decay2 : decay3<T> {};
template <class T, size_t N> struct decay2<T[N]> : tag<T *> {};
template <class T> struct decay : decay2<remove_reference_t<T>> {};
template <class T> using decay_t = type_t<decay<T>>;
// is_convertible
template <class T> T declval(); // no implementation
template <class T, T t> struct integral_constant {
static constexpr T value = t;
constexpr integral_constant(){};
constexpr operator T() const {
return value;
}
constexpr T operator()() const {
return value;
}
};
template <bool b> using bool_t = integral_constant<bool, b>;
using true_type = bool_t<true>;
using false_type = bool_t<false>;
template <class...> struct voider : tag<void> {};
template <class... Ts> using void_t = type_t<voider<Ts...>>;
namespace details {
template <template <class...> class Z, class, class... Ts> struct can_apply : false_type {};
template <template <class...> class Z, class... Ts>
struct can_apply<Z, void_t<Z<Ts...>>, Ts...> : true_type {};
} // namespace details
template <template <class...> class Z, class... Ts>
using can_apply = details::can_apply<Z, void, Ts...>;
namespace details {
template <class From, class To> using try_convert = decltype(To{declval<From>()});
}
template <class From, class To>
struct is_convertible : can_apply<details::try_convert, From, To> {};
template <> struct is_convertible<void, void> : true_type {};
// enable_if
template <bool, class = void> struct enable_if {};
template <class T> struct enable_if<true, T> : tag<T> {};
template <bool b, class T = void> using enable_if_t = type_t<enable_if<b, T>>;
// res_of
namespace details {
template <class G, class... Args> using invoke_t = decltype(declval<G>()(declval<Args>()...));
template <class Sig, class = void> struct res_of {};
template <class G, class... Args>
struct res_of<G(Args...), void_t<invoke_t<G, Args...>>> : tag<invoke_t<G, Args...>> {};
} // namespace details
template <class Sig> using res_of = details::res_of<Sig>;
template <class Sig> using res_of_t = type_t<res_of<Sig>>;
// aligned_storage
template <size_t size, size_t align> struct alignas(align) aligned_storage_t { char buff[size]; };
// is_same
template <class A, class B> struct is_same : false_type {};
template <class A> struct is_same<A, A> : true_type {};
template <class Sig, size_t sz, size_t algn> struct small_task;
template <class R, class... Args, size_t sz, size_t algn> struct small_task<R(Args...), sz, algn> {
struct vtable_t {
void (*mover)(void *src, void *dest);
void (*destroyer)(void *);
R (*invoke)(void const *t, Args &&...args);
template <class T> static vtable_t const *get() {
static const vtable_t table = {
[](void *src, void *dest) { new (dest) T(move(*static_cast<T *>(src))); },
[](void *t) { static_cast<T *>(t)->~T(); },
[](void const *t, Args &&...args) -> R {
return (*static_cast<T const *>(t))(forward<Args>(args)...);
}};
return &table;
}
};
vtable_t const *table = nullptr;
aligned_storage_t<sz, algn> data;
template <class F, class dF = decay_t<F>, enable_if_t<!is_same<dF, small_task>{}> * = nullptr,
enable_if_t<is_convertible<res_of_t<dF &(Args...)>, R>{}> * = nullptr>
small_task(F &&f) : table(vtable_t::template get<dF>()) {
static_assert(sizeof(dF) <= sz, "object too large");
static_assert(alignof(dF) <= algn, "object too aligned");
new (&data) dF(forward<F>(f));
}
~small_task() {
if (table)
table->destroyer(&data);
}
small_task(const small_task &o) : table(o.table) {
data = o.data;
}
small_task(small_task &&o) : table(o.table) {
if (table)
table->mover(&o.data, &data);
}
small_task() {
}
small_task &operator=(const small_task &o) {
this->~small_task();
new (this) small_task(move(o));
return *this;
}
small_task &operator=(small_task &&o) {
this->~small_task();
new (this) small_task(move(o));
return *this;
}
explicit operator bool() const {
return table;
}
R operator()(Args... args) const {
return table->invoke(&data, forward<Args>(args)...);
}
};
template <class R, class... Args, size_t sz, size_t algn>
inline bool operator==(const small_task<R(Args...), sz, algn> &__f, nullptr_t) {
return !static_cast<bool>(__f);
}
/// @overload
template <class R, class... Args, size_t sz, size_t algn>
inline bool operator==(nullptr_t, const small_task<R(Args...), sz, algn> &__f) {
return !static_cast<bool>(__f);
}
template <class R, class... Args, size_t sz, size_t algn>
inline bool operator!=(const small_task<R(Args...), sz, algn> &__f, nullptr_t) {
return static_cast<bool>(__f);
}
/// @overload
template <class R, class... Args, size_t sz, size_t algn>
inline bool operator!=(nullptr_t, const small_task<R(Args...), sz, algn> &__f) {
return static_cast<bool>(__f);
}
template <class Sig> using function = small_task<Sig, sizeof(void *) * 4, alignof(void *)>;
} // namespace ustd
#endif