forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdna_trainer.py
144 lines (121 loc) · 5.53 KB
/
dna_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import argparse
import tensorlayerx as tlx
from gammagl.datasets import Planetoid
from gammagl.utils import add_self_loops, mask_to_index
from tensorlayerx.model import TrainOneStep, WithLoss
from gammagl.models import DNAModel
from sklearn.model_selection import StratifiedKFold
import numpy as np
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, y):
logits = self.backbone_network(data['x'], data['edge_index'])
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
loss = self._loss_fn(train_logits, train_y)
return loss
def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics
Returns:
rst
"""
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
def gen_uniform_20_20_60_split(data):
skf = StratifiedKFold(5, shuffle=True, random_state=55)
data.y = tlx.convert_to_numpy(data.y)
idx = [tlx.convert_to_tensor(i) for _, i in skf.split(data.y, data.y)]
data.train_idx = tlx.convert_to_tensor(idx[0], dtype=tlx.int64)
data.val_idx = tlx.convert_to_tensor(idx[1], dtype=tlx.int64)
data.test_idx = tlx.convert_to_tensor(tlx.concat(idx[2:], axis=0), dtype=tlx.int64)
data.y = tlx.convert_to_tensor(data.y)
return data
def main(args):
# load datasets
if str.lower(args.dataset) not in ['cora','pubmed','citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
graph = dataset[0]
graph = gen_uniform_20_20_60_split(graph)
net = DNAModel(in_channels=dataset.num_node_features,
hidden_channels=args.hidden_dim,
out_channels=dataset.num_classes,
num_layers=args.num_layers,
drop_rate_conv=args.drop_rate_conv,
drop_rate_model=args.drop_rate_model,
heads=args.heads,
groups=args.groups,
name="DNA")
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": graph.x,
"y": graph.y,
"edge_index": graph.edge_index,
# "edge_weight": edge_weight,
"train_idx": graph.train_idx,
"test_idx": graph.test_idx,
"val_idx": graph.val_idx,
"num_nodes": graph.num_nodes,
}
best_val_acc = 0
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, graph.y)
net.set_eval()
logits = net(data['x'], data['edge_index'])
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
print("Epoch [{:0>3d}] ".format(epoch+1)\
+ " train loss: {:.4f}".format(train_loss.item())\
+ " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
net.save_weights(args.best_model_path+net.name+".npz", format='npz_dict')
net.load_weights(args.best_model_path+net.name+".npz", format='npz_dict')
net.set_eval()
logits = net(data['x'], data['edge_index'])
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
print("Test acc: {:.4f}".format(test_acc))
if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.005, help="learnin rate")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch")
parser.add_argument("--hidden_dim", type=int, default=128, help="dimention of hidden layers")
parser.add_argument("--drop_rate_conv", type=float, default=0.8, help="drop_rate_conv")
parser.add_argument("--drop_rate_model", type=float, default=0.8, help="drop_rate_model")
parser.add_argument("--num_layers", type=int, default=4, help="number of layers")
parser.add_argument("--heads", type=int, default=8, help="number of heads for stablization")
parser.add_argument("--groups", type=int, default=16, help="number of groups")
parser.add_argument("--l2_coef", type=float, default=5e-5, help="l2 loss coeficient")
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--self_loops", type=int, default=1, help="number of graph self-loop")
parser.add_argument("--gpu", type=int, default=6)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)