forked from BUPT-GAMMA/GammaGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjknet_trainer.py
170 lines (142 loc) · 6.29 KB
/
jknet_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# -*- coding: utf-8 -*-
"""
@File : jknet_trainer.py
@Time : 2022/4/10 11:16 A.M.
@Author : Jia Yiming
"""
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import argparse
import tensorlayerx as tlx
from gammagl.datasets import Planetoid
from gammagl.models import JKNet
from tensorlayerx.model import TrainOneStep, WithLoss
from gammagl.utils import add_self_loops, calc_gcn_norm, mask_to_index, set_device
class SemiSpvzLoss(WithLoss):
def __init__(self, net, loss_fn):
super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, y):
logits = self.backbone_network(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
train_logits = tlx.gather(logits, data['train_idx'])
train_y = tlx.gather(data['y'], data['train_idx'])
loss = self._loss_fn(train_logits, train_y)
return loss
def calculate_acc(logits, y, metrics):
"""
Args:
logits: node logits
y: node labels
metrics: tensorlayerx.metrics
Returns:
rst
"""
metrics.update(logits, y)
rst = metrics.result()
metrics.reset()
return rst
def main(args):
# load cora dataset
# set_device(5)
if str.lower(args.dataset) not in ['cora', 'pubmed', 'citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
dataset.process() # suggest to execute explicitly so far
graph = dataset[0]
edge_index, _ = add_self_loops(graph.edge_index, num_nodes=graph.num_nodes, n_loops=args.self_loops)
edge_weight = tlx.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes))
useful_node = 0
useful_index = []
useful_mask = []
for i in range(graph.num_nodes):
new = graph.train_mask[i] or graph.test_mask[i] or graph.val_mask[i]
useful_mask.append(new)
if new:
useful_index.append(i)
useful_node += 1
useful_mask = tlx.stack(useful_mask)
train_num = int(useful_node * 0.6)
val_num = int(useful_node * 0.2)
test_num = useful_node - train_num - val_num
graph.train_mask = tlx.convert_to_numpy(graph.train_mask)
graph.val_mask = tlx.convert_to_numpy(graph.val_mask)
graph.test_mask = tlx.convert_to_numpy(graph.test_mask)
graph.train_mask[:] = False
graph.train_mask[useful_index[:train_num]] = True
graph.val_mask[:] = False
graph.val_mask[useful_index[train_num:train_num + val_num]] = True
graph.test_mask[:] = False
graph.test_mask[useful_index[train_num + val_num:train_num + val_num + test_num]] = True
graph.tensor()
# for mindspore, it should be passed into node indices
train_idx = mask_to_index(graph.train_mask)
test_idx = mask_to_index(graph.test_mask)
val_idx = mask_to_index(graph.val_mask)
net = JKNet(dataset=dataset,
mode=args.mode,
num_layers=args.iter_K,
drop=args.drop_rate)
optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.weight_decay)
metrics = tlx.metrics.Accuracy()
train_weights = net.trainable_weights
loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": graph.x,
"y": graph.y,
"edge_index": edge_index,
"edge_weight": edge_weight,
"train_idx": train_idx,
"test_idx": test_idx,
"val_idx": val_idx,
"num_nodes": graph.num_nodes,
}
best_val_acc = 0
for epoch in range(args.n_epoch):
net.set_train()
train_loss = train_one_step(data, graph.y)
net.set_eval()
logits = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
val_logits = tlx.gather(logits, data['val_idx'])
val_y = tlx.gather(data['y'], data['val_idx'])
val_acc = calculate_acc(val_logits, val_y, metrics)
print("Epoch [{:0>3d}] ".format(epoch + 1) \
+ " train loss: {:.4f}".format(train_loss.item()) \
+ " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
net.save_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
net.load_weights(args.best_model_path + net.name + ".npz", format='npz_dict')
if tlx.BACKEND == 'torch':
net.to(data['x'].device)
net.set_eval()
logits = net(data['x'], data['edge_index'], data['edge_weight'], data['num_nodes'])
test_logits = tlx.gather(logits, data['test_idx'])
test_y = tlx.gather(data['y'], data['test_idx'])
test_acc = calculate_acc(test_logits, test_y, metrics)
print("Test acc: {:.4f}".format(test_acc))
if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument("--lr", type=float, default=0.01, help="learnin rate")
parser.add_argument("--weight_decay", type=float, default=1e-3, help="Adam weight decay")
parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch")
parser.add_argument("--hidden_dim", type=int, default=16, help="dimention of hidden layers")
parser.add_argument("--drop_rate", type=float, default=0.5, help="drop rate")
parser.add_argument("--iter_K", type=int, default=6, help="number K of iteration")
parser.add_argument("--l2_coef", type=float, default=1e-3, help="l2 loss coeficient")
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--self_loops", type=int, default=1, help="number of graph self-loop")
parser.add_argument("--mode", type=str, default='max', help="mode of jumping knowledge, optional=['max', 'cat', 'lstm']")
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)