Skip to content

Latest commit

 

History

History
151 lines (117 loc) · 4.52 KB

README.md

File metadata and controls

151 lines (117 loc) · 4.52 KB

AIcon 2

CircleCI Spell check workflow Docker Build CI CodeQL

AIcon is a web application that uses state-of-the-art AI to generate images from input text.

AIconは最先端のAIを使って、入力された文章からそれに沿った画像を生成するWEBアプリケーションです。

logo

Example

  • Burning ice

Burning ice
  • New green promenade

New green promenade
  • Fire and ice

Fire and ice

Requirements

System Requirements

Minimum

  • CPU: 64-bit Intel or AMD processor (also known as x86_64, x64, and AMD64)
  • Memory: 8 GB RAM
  • Graphics: Nvidia GeForce GTX and RTX series from 4 GB RAM or equivalent Nvidia Quadro card

Recommendation

  • CPU: 64-bit Intel or AMD processor (also known as x86_64, x64, and AMD64)
  • Memory: 16 GB RAM
  • Graphics: Nvidia GeForce RTX series from 8 GB RAM with Tensor Core

Platform Support

  • Ubuntu 18.04/20.04
  • WSL2 (Requires CUDA for WSL Public Preview. See here)

Usage

1. Clone this repo.

2. Pull docker image

docker pull magicspell/aicon:latest

(Or build docker image yourself)

cd docker && ./build-docker.sh

3. Run docker container

cd docker && ./run-docker.sh

4. Run the AIcon server

cd backend && python server.py

5. Connect to the sever

With the default settings, you can connect to the server by typing http://localhost:5050 in the address bar of your browser.

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{brock2019large,
    title   = {Large Scale GAN Training for High Fidelity Natural Image Synthesis}, 
    author  = {Andrew Brock and Jeff Donahue and Karen Simonyan},
    year    = {2019},
    eprint  = {1809.11096},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{sitzmann2020implicit,
    title   = {Implicit Neural Representations with Periodic Activation Functions},
    author  = {Vincent Sitzmann and Julien N. P. Martel and Alexander W. Bergman and David B. Lindell and Gordon Wetzstein},
    year    = {2020},
    eprint  = {2006.09661},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation}, 
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{kitaev2020reformer,
    title   = {Reformer: The Efficient Transformer},
    author  = {Nikita Kitaev and Łukasz Kaiser and Anselm Levskaya},
    year    = {2020},
    eprint  = {2001.04451},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{esser2021taming,
    title   = {Taming Transformers for High-Resolution Image Synthesis},
    author  = {Patrick Esser and Robin Rombach and Björn Ommer},
    year    = {2021},
    eprint  = {2012.09841},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}