forked from ncclab-sustech/MOVEA
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMopso.py
73 lines (50 loc) · 2.78 KB
/
Mopso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#encoding: utf-8
import numpy as np
from public import init,update,plot,P_objective,util
import time
class Mopso:
def __init__(self,particals,max_,min_,thresh,mesh_div=10):
self.i = 0
self.mesh_div = mesh_div
self.particals = particals
self.thresh = thresh
self.max_ = max_
self.min_ = min_
self.m = 2
self.max_v = 100 * np.ones(len(max_), )
self.min_v = -100 * np.ones(len(min_), )
self.plot_ = plot.Plot_pareto()
def evaluation_fitness(self):
self.fitness_ = P_objective.P_objective("value", "TEScv2", self.m, self.in_,self.i)
def initialize(self):
self.in_ = init.init_designparams(self.particals,self.min_,self.max_)
self.v_ = init.init_v(self.particals,self.max_v,self.min_v)
self.evaluation_fitness()
self.in_p,self.fitness_p = init.init_pbest(self.in_,self.fitness_)
self.archive_in,self.archive_fitness = init.init_archive(self.in_,self.fitness_)
self.in_g,self.fitness_g = update.update_gbest_1(self.archive_in,self.archive_fitness,self.mesh_div,self.particals)
def update_(self):
self.v_ = update.update_v(self.v_,self.min_v,self.max_v,self.in_,self.in_p,self.in_g)
self.in_ = update.update_in(self.in_,self.v_,self.min_,self.max_)
self.evaluation_fitness()
self.in_p,self.fitness_p = update.update_pbest(self.in_,self.fitness_,self.in_p,self.fitness_p)
self.archive_in, self.archive_fitness = update.update_archive_1(self.in_, self.fitness_, self.archive_in,
self.archive_fitness,
self.thresh, self.mesh_div)
self.in_g,self.fitness_g = update.update_gbest_1(self.archive_in,self.archive_fitness,self.mesh_div,self.particals)
def done(self,cycle_):
self.initialize()
self.plot_.show(self.in_,self.fitness_,self.archive_in,self.archive_fitness,-1)
since = time.time()
for i in range(cycle_):
self.i = i
self.update_()
print('Epoch',i,'time consuming: ',np.round(time.time() - since, 2), "s")
print(self.archive_fitness)
if self.i % 10 == 0 :
self.in_ = init.init_designparams(self.particals, self.min_, self.max_)
self.v_ = init.init_v(self.particals, self.max_v, self.min_v)
self.evaluation_fitness()
self.in_p, self.fitness_p = init.init_pbest(self.in_, self.fitness_)
self.plot_.show(self.in_,self.fitness_,self.archive_in,self.archive_fitness, i, self.m)
return self.archive_in,self.archive_fitness