-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathhelper.py
76 lines (58 loc) · 2.17 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
def generateMatrix(rank,seed,singular=False):
np.random.seed(seed)
while True:
matrix = np.random.randint(-10,10, size=(rank, rank))
if (np.linalg.matrix_rank(matrix) != rank) ^ (not singular):
return matrix
def printInMatrixFormat(Ab,padding=7,truncating=3):
rank = len(Ab)
rowFormat = ','.join(["{{:>{}.{}f}}".format(padding,truncating)] * rank) + " || {{:^{}.{}f}}".format(padding,truncating)
matrixFormat = '\n'.join([rowFormat] * rank)
flattern = [e for row in Ab for e in row]
print(matrixFormat.format(*flattern))
def generatePoints2D(seed):
np.random.seed(seed)
num = np.random.randint(128,256)
m = np.random.random() * 10 - 5 # -5 ~ 5
b = np.random.random() * 10 + 5 # 5 ~ 15
x = np.random.random(size=num) * 10 - 5
y = x * m + b
y += np.random.normal(size=num)
return x.tolist(),y.tolist()
def generatePoints3D(seed):
np.random.seed(seed)
num = np.random.randint(128,256)
X = np.linspace(-5, 5, num)
m = np.random.random(2) * 10 - 5
b = np.random.random() * 15 + 5
X = np.vstack([X]*2).T + np.random.randn(num, 2)
Y = np.dot(X, m) + b + np.random.normal(size=num)
return X.tolist(), Y.tolist()
def vs_scatter_2d(X, Y, m=None, b=None):
plt.figure()
x_vals = (-5, 5)
plt.xlim(x_vals)
plt.xlabel('x',fontsize=18)
plt.ylabel('y',fontsize=18)
plt.scatter(X,Y,c='b')
if m != None and b != None:
y_vals = [m*x+b for x in x_vals]
plt.plot(x_vals, y_vals, '-', color='r')
plt.show()
def vs_scatter_3d(X, Y, coeff=None):
title = 'target points'
cmap = cm.get_cmap('gist_rainbow')
fig = plt.figure()
axe3d = fig.gca(projection = '3d')
axe3d.scatter(list(zip(*X))[0], list(zip(*X))[1], Y, linewidth = 0)
if coeff:
title = 'linear regression on target points'
x = [-5 , 5]
y = [-5, 5]
z = np.dot(np.transpose([x, y]), coeff[:2]) + coeff[2]
axe3d.plot(x, y, z, c='r')
plt.show()