-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathget_lds.py
executable file
·1259 lines (1110 loc) · 47.9 KB
/
get_lds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/env python
import sys
import os
import numpy as np
import glob
if sys.version_info.major == 2:
from urllib2 import urlopen
else:
from urllib.request import urlopen
import argparse
import scipy.interpolate as si
from copy import copy
try:
import pyfits as fits
except:
import astropy.io.fits as fits
rootdir = os.path.dirname(os.path.realpath(__file__))
def parse():
"""
Parse command-line arguments.
Returns
-------
input_filename: String
Command-line input set by '-ifile'.
output_filename: String
Command-line input set by '-ofile'. Output file where to store results.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-ifile', default=None)
parser.add_argument('-ofile', default=None)
args = parser.parse_args()
# Set the input file:
input_filename = 'input_files/all_atlas_lds_kepler.dat'
if args.ifile is not None:
input_filename = args.ifile
# Set the output file:
output_filename = 'all_atlas_lds_kepler.dat'
if args.ofile is not None:
output_filename = args.ofile
return input_filename, output_filename
def FixSpaces(intervals):
s = ''
i = 0
while True:
if intervals[i]=='':
intervals.pop(i)
else:
i = i+1
if len(intervals)==i:
break
if len(intervals)==i:
break
for i in range(len(intervals)):
if i!=len(intervals)-1:
s = s+str(np.double(intervals[i]))+'\t'
else:
s = s+str(np.double(intervals[i]))+'\n'
return s
def getFileLines(fname):
with open(fname, 'r') as f:
l = f.readline()
if l.find('\n') == -1:
lines = l.split('\r')
else:
f.seek(0)
l = f.read()
lines = l.split('\n')
return lines
def getATLASStellarParams(lines):
for i in range(len(lines)):
line = lines[i]
idx = line.find('EFF')
if idx != -1:
idx2 = line.find('GRAVITY')
TEFF = line[idx +4:idx2-1]
GRAVITY = line[idx2+8:idx2+8+5]
VTURB = line[idx +6:idx2]
idx = line.find('L/H')
if idx == -1:
LH = '1.25'
else:
LH = line[idx+4:]
break
return str(int(np.double(TEFF))), str(np.round(np.double(GRAVITY),2)), \
str(np.round(np.double(LH),2))
def getIntensitySteps(lines):
for j in range(len(lines)):
line = lines[j]
idx = line.find('intervals')
if idx != -1:
line = lines[j+1]
intervals = line.split(' ')
break
s = FixSpaces(intervals)
return j+2, s
version = 'v.1.0.'
def get_derivatives(rP, IP):
"""
This function calculates the derivatives in an intensity profile I(r).
For a detailed explaination, see Section 2.2 in Espinoza & Jordan (2015).
INPUTS:
rP: Normalized radii, given by r = sqrt(1-mu**2)
IP: Intensity at the given radii I(r).
OUTPUTS:
rP: Output radii at which the derivatives are calculated.
dI/dr: Measurement of the derivative of the intensity profile.
"""
ri = rP[1:-1] # Points
mui = np.sqrt(1-ri**2)
rib = rP[:-2] # Points inmmediately before
ria = rP[2:] # Points inmmediately after
Ii = IP[1:-1]
Iib = IP[:-2]
Iia = IP[2:]
rbar = (ri+rib+ria)/3.0
Ibar = (Ii+Iib+Iia)/3.0
num = (ri-rbar)*(Ii-Ibar) + (rib-rbar)*(Iib-Ibar) + (ria-rbar)*(Iia-Ibar)
den = (ri-rbar)**2 + (rib-rbar)**2 + (ria-rbar)**2
return rP[1:-1], num/den
def fix_spaces(the_string):
"""
This function fixes some spacing issues in the ATLAS model files.
"""
splitted = the_string.split(' ')
for s in splitted:
if(s!=''):
return s
return the_string
def fit_exponential(mu, I):
"""
Calculate the coefficients for the exponential LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
e1: Coefficient of the linear term of the exponential law.
e2: Coefficient of the exponential term of the exponential law.
"""
# Define A matrix for the linear system:
A = np.zeros([2,2])
# Define b vector for the linear system:
b = np.zeros(2)
# Obtain alpha_n_k and beta_k that fill the A matrix and b vector.
# In this case, g_1 = 1-mu, g_2 = 1/(1-exp(mu)):
A[0,0] = sum((1.0-mu)**2) # alpha_{1,1}
A[0,1] = sum((1.0-mu)*(1./(1.-np.exp(mu)))) # alpha_{1,2}
A[1,0] = A[0,1] # alpha_{2,1} = alpha_{1,2}
A[1,1] = sum((1./(1.-np.exp(mu)))**2) # alpha_{2,2}
b[0] = sum((1.0-mu)*(1.0-I)) # beta_1
b[1] = sum((1./(1.-np.exp(mu)))*(1.0-I)) # beta_2
return np.linalg.solve(A,b)
def fit_logarithmic(mu, I):
"""
Calculate the coefficients for the logarithmic LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
l1: Coefficient of the linear term of the logarithmic law.
l2: Coefficient of the logarithmic term of the logarithmic law.
"""
# Define A matrix for the linear system:
A = np.zeros([2,2])
# Define b vector for the linear system:
b = np.zeros(2)
# Obtain the alpha_n_k and beta_k that fill the A matrix and b vector.
# In this case, g_1 = 1-mu, g_2 = mu*ln(mu):
A[0,0] = sum((1.0-mu)**2) # alpha_{1,1}
A[0,1] = sum((1.0-mu)*(mu*np.log(mu))) # alpha_{1,2}
A[1,0] = A[0,1] # alpha_{2,1} = alpha_{1,2}
A[1,1] = sum((mu*np.log(mu))**2) # alpha_{2,2}
b[0] = sum((1.0-mu)*(1.0-I)) # beta_1
b[1] = sum((mu*np.log(mu))*(1.0-I)) # beta_2
return np.linalg.solve(A,b)
def fit_square_root(mu, I):
"""
Calculates the coefficients for the square-root LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
s1: Coefficient of the linear term of the square-root law.
s2: Coefficient of the square-root term of the square-root law.
"""
# Define A matrix for the linear system:
A = np.zeros([2,2])
# Define b vector for the linear system:
b = np.zeros(2)
# Obtain the alpha_n_k and beta_k that fill the A matrix and b vector:
for n in range(1,3,1):
for k in range(1,3,1):
A[n-1,k-1] = sum((1.0-mu**(n/2.0))*(1.0-mu**(k/2.0)))
b[n-1] = sum((1.0-mu**(n/2.0))*(1.0-I))
x = np.linalg.solve(A,b)
return x[1],x[0] # x[1] = s1, x[0] = s2
def fit_non_linear(mu, I):
"""
Calculate the coefficients for the non-linear LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
c1: Coefficient of the square-root term of the non-linear law.
c2: Coefficient of the linear term of the non-linear law.
c3: Coefficient of the (1-mu^{3/2}) term of the non-linear law.
c4: Coefficient of the quadratic term of the non-linear law.
"""
# Define A matrix for the linear system:
A = np.zeros([4,4])
# Define b vector for the linear system:
b = np.zeros(4)
# Obtain the alpha_n_k and beta_k that fill the A matrix and b vector:
for n in range(1,5,1):
for k in range(1,5,1):
A[n-1,k-1] = sum((1.0-mu**(n/2.0))*(1.0-mu**(k/2.0)))
b[n-1] = sum((1.0-mu**(n/2.0))*(1.0-I))
return np.linalg.solve(A,b)
def fit_three_parameter(mu, I):
"""
Calculate the coefficients for the three-parameter LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
b1: Coefficient of the linear term of the three-parameter law.
b2: Coefficient of the (1-mu^{3/2}) part of the three-parameter law.
b3: Coefficient of the quadratic term of the three-parameter law.
"""
# Define A matrix for the linear system:
A = np.zeros([3,3])
# Define b vector for the linear system:
b = np.zeros(3)
# Obtain the alpha_n_k and beta_k that fill the A matrix and b vector.
# In this case we skip c1 (i.e., set c1=0):
for n in range(2,5,1):
for k in range(2,5,1):
A[n-2,k-2] = sum((1.0-mu**(n/2.0))*(1.0-mu**(k/2.0)))
b[n-2] = sum((1.0-mu**(n/2.0))*(1.0-I))
return np.linalg.solve(A,b)
def fit_quadratic(mu, I):
"""
Calculate the coefficients for the quadratic LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
u1: Linear coefficient of the quadratic law.
u2: Quadratic coefficient of the quadratic law.
"""
# Define A matrix for the linear system:
A = np.zeros([2,2])
# Define b vector for the linear system:
b = np.zeros(2)
# Obtain the alpha_n_k and beta_k that fill the A matrix and b vector:
for n in range(1,3,1):
for k in range(1,3,1):
A[n-1,k-1] = sum(((1.0-mu)**n)*((1.0-mu)**k))
b[n-1] = sum(((1.0-mu)**n)*(1.0-I))
return np.linalg.solve(A,b)
def fit_linear(mu, I):
"""
Calculate the coefficients for the linear LD law.
It assumes input intensities are normalized. For a derivation of the
least-squares problem solved, see Espinoza & Jordan (2015).
INPUTS:
mu: Angles at which each intensity is calculated (numpy array).
I: Normalized intensities (i.e., I(mu)/I(1)) (numpy array).
OUTPUTS:
a: Coefficient of the linear law.
"""
alpha_1_1 = sum((1.0-mu)**2)
beta_1 = sum((1.0-mu)*(1.0-I))
a = beta_1/alpha_1_1
return a
def downloader(url):
"""
This function downloads a file from the given url using wget.
"""
file_name = url.split('/')[-1]
print('\t + Downloading file {:s} from {:s}.'.format(file_name, url))
os.system('wget '+url)
def ATLAS_model_search(s_met, s_grav, s_teff, s_vturb):
"""
Given input metallicities, gravities, effective temperature and
microturbulent velocity, this function estimates which model is
the most appropiate (i.e., the closer one in parameter space).
If the model is not present in the system, it downloads it from
Robert L. Kurucz's website (kurucz.harvard.edu/grids.html).
"""
if not os.path.exists(rootdir + '/atlas_models'):
os.mkdir(rootdir + '/atlas_models')
os.mkdir(rootdir + '/atlas_models/raw_models')
model_path = rootdir + '/atlas_models/'
# This is the list of all the available metallicities in Kurucz's website:
possible_mets = np.array([-0.1, -0.2, -0.3, -0.5, -1.0, -1.5, -2.0, -2.5,
-3.0, -3.5, -4.0, -4.5, -5.0, 0.0, 0.1, 0.2, 0.3, 0.5, 1.0])
# And this is the list of all possible vturbs:
possible_vturb = np.array([0.0, 2.0, 4.0, 8.0])
# Check if turbulent velocity is given. If not, set to 2 km/s:
if s_vturb == -1:
print('\t > No known turbulent velocity. Setting it to 2 km/s.')
s_vturb = 2.0
if s_vturb not in possible_vturb:
# Check closest vturb to input:
vturb_diff = np.inf
chosen_vturb = np.inf
for vturb in possible_vturb:
# Estimate distance between current and input vturb:
c_vturb_diff = np.abs(vturb - s_vturb)
if c_vturb_diff < vturb_diff:
chosen_vturb = c_vturb_diff
vturb_diff = copy(c_vturb_diff)
print('\t > For input vturb {} km/s, closest vturb is {} km/s.'.
format(s_vturb, chosen_vturb))
else:
chosen_vturb = s_vturb
if s_met not in possible_mets:
# Now check closest metallicity model for input star:
m_diff = np.inf
chosen_met = np.inf
for met in possible_mets:
# Estimate distance between current and input metallicity:
c_m_diff = np.abs(met-s_met)
if(c_m_diff<m_diff):
chosen_met = met
m_diff = copy(c_m_diff)
print('\t > For input metallicity {}, closest metallicity is {}.'
.format(s_met, chosen_met))
else:
chosen_met = s_met
# Check if the intensity file for the calculated metallicity and
# vturb is on the atlas_models folder:
if chosen_met == 0.0:
met_dir = 'p00'
elif chosen_met < 0:
met_string = str(np.abs(chosen_met)).split('.')
met_dir = 'm'+met_string[0]+met_string[1]
else:
met_string = str(np.abs(chosen_met)).split('.')
met_dir = 'p'+met_string[0]+met_string[1]
print('\t + Checking if ATLAS model file is on the system ...')
# This will make the code below easier to follow:
amodel = '{:s}k{:.0f}'.format(met_dir, chosen_vturb)
afile = model_path + 'raw_models/i' + amodel
if os.path.exists(afile + 'new.pck') or \
os.path.exists(afile + '.pck19') or \
os.path.exists(afile + '.pck'):
print('\t + Model file found.')
else:
# If not in the system, download it from Kurucz's website.
# First, check all possible files to download:
print('\t + Model file not found.')
response = urlopen('http://kurucz.harvard.edu/grids/grid' +
met_dir + '/')
html = str(response.read())
ok = True
filenames = []
while(ok):
idx = html.find('>i'+met_dir.lower())
if(idx==-1):
ok = False
else:
for i in range(30):
if(html[idx+i]=='<'):
filenames.append(html[idx+1:idx+i])
html = html[idx+1:]
hasnew = False
gotit = False
araw = model_path + "raw_models/"
# Check that filenames have the desired vturb and prefer *new* models:
for afname in filenames:
if 'new' in afname and amodel in afname:
hasnew = True
gotit = True
downloader('http://kurucz.harvard.edu/grids/grid'
+ met_dir + '/' + afname)
if not os.path.exists(araw):
os.mkdir(araw)
os.rename(afname, araw + afname)
if not hasnew:
for afname in filenames:
if '.pck19' in afname and amodel in afname:
gotit = True
downloader('http://kurucz.harvard.edu/grids/grid'
+ met_dir + '/' + afname)
if not os.path.exists(araw):
os.mkdir(araw)
os.rename(afname, araw + afname)
if not gotit:
for afname in filenames:
if amodel+'.pck' in afname:
gotit = True
downloader('http://kurucz.harvard.edu/grids/grid'
+ met_dir + '/' + afname)
if not os.path.exists(araw):
os.mkdir(araw)
os.rename(afname, araw + afname)
if not gotit:
print('\t > No model with closest metallicity of {} and closest '
'vturb of {} km/s found.\n\t Please, modify the input '
'values of the target and select other stellar parameters '
'for it.'.format(chosen_met, chosen_vturb))
sys.exit()
# Check if the models in machine readable form have been generated.
# If not, generate them:
if not os.path.exists(model_path + amodel):
# Now read the files and generate machine-readable files:
possible_paths = [afile+'new.pck', afile+'.pck19', afile+'.pck']
for i in range(len(possible_paths)):
possible_path = possible_paths[i]
if os.path.exists(possible_path):
lines = getFileLines(possible_path)
# Create folder for current metallicity and turbulent
# velocity if not created already:
if not os.path.exists(model_path + amodel):
os.mkdir(model_path + amodel)
# Save files in the folder:
while True:
TEFF,GRAVITY,LH = getATLASStellarParams(lines)
if not os.path.exists(model_path + amodel+'/'+TEFF):
os.mkdir(model_path + amodel+'/'+TEFF)
idx,mus = getIntensitySteps(lines)
save_mr_file = True
if os.path.exists(model_path + amodel+'/'+TEFF+
'/grav_'+GRAVITY+'_lh_'+LH+'.dat'):
save_mr_file = False
if save_mr_file:
f = open(model_path + amodel+'/'+TEFF+
'/grav_'+GRAVITY+'_lh_'+LH+'.dat','w')
f.write('#TEFF:' + TEFF +
' METALLICITY:' + met_dir +
' GRAVITY:' + GRAVITY +
' VTURB:' + str(int(chosen_vturb)) +
' L/H: ' + LH + '\n')
f.write('#wav (nm) \t cos(theta):' + mus)
for i in range(idx, len(lines)):
line = lines[i]
idx = line.find('EFF')
idx2 = line.find('\x0c')
if(idx2!=-1 or line==''):
hhhh=1
elif(idx!=-1):
lines = lines[i:]
break
else:
wav_p_intensities = line.split(' ')
s = FixSpaces(wav_p_intensities)
if save_mr_file:
f.write(s+'\n')
if save_mr_file:
f.close()
if(i==len(lines)-1):
break
# Now, assuming models are written in machine readable form, we can work:
chosen_met_folder = model_path + amodel
# Now check closest Teff for input star:
t_diff = np.inf
chosen_teff = np.inf
chosen_teff_folder = ''
tefffolders = glob.glob(chosen_met_folder+'/*')
for tefffolder in tefffolders:
fname = tefffolder.split('/')[-1]
teff = np.double(fname)
c_t_diff = abs(teff-s_teff)
if(c_t_diff<t_diff):
chosen_teff = teff
chosen_teff_folder = tefffolder
t_diff = c_t_diff
print('\t + For input effective temperature {:.1f} K, closest value '
'is {:.0f} K.'.format(s_teff, chosen_teff))
# Now check closest gravity and turbulent velocity:
grav_diff = np.inf
chosen_grav = 0.0
chosen_fname = ''
all_files = glob.glob(chosen_teff_folder+'/*')
for filename in all_files:
grav = np.double((filename.split('grav')[1]).split('_')[1])
c_g_diff = abs(grav-s_grav)
if c_g_diff < grav_diff:
chosen_grav = grav
grav_diff = c_g_diff
chosen_filename = filename
# Summary:
model_root_len = len(model_path)
print('\t + For input metallicity {}, effective temperature {} K, and\n'
'\t log-gravity {}, and turbulent velocity {} km/s, closest\n'
'\t combination is metallicity: {}, effective temperature: {} K,\n'
'\t log-gravity {} and turbulent velocity of {} km/s.\n\n'
'\t + Chosen model file to be used:\n\t\t{:s}.\n'.
format(s_met, s_teff, s_grav, s_vturb, chosen_met, chosen_teff,
chosen_grav, chosen_vturb, chosen_filename[model_root_len:]))
return chosen_filename, chosen_teff, chosen_grav, chosen_met, chosen_vturb
def PHOENIX_model_search(s_met, s_grav, s_teff, s_vturb):
"""
Given input metallicities, gravities, effective temperature and
microtiurbulent velocity, this function estimates which model is
the most appropiate (i.e., the closer one in parameter space).
If the model is not present in the system, it downloads it from
the PHOENIX public library (phoenix.astro.physik.uni-goettingen.de).
"""
if not os.path.exists(rootdir + '/phoenix_models'):
os.mkdir(rootdir + '/phoenix_models')
os.mkdir(rootdir + '/phoenix_models/raw_models')
# Path to the PHOENIX models
model_path = rootdir + '/phoenix_models/raw_models/'
# In PHOENIX models, all of them are computed with vturb = 2 km/2
if(s_vturb==-1):
print('\t + No known turbulent velocity. Setting it to 2 km/s.')
s_vturb = 2.0
possible_mets = np.array([0.0, -0.5, -1.0, 1.0, -1.5, -2.0, -3.0, -4.0])
if s_met not in possible_mets:
# Now check closest metallicity model for input star:
m_diff = np.inf
chosen_met = np.inf
for met in possible_mets:
# Estimate distance between current and input metallicity:
c_m_diff = np.abs(met-s_met)
if(c_m_diff<m_diff):
chosen_met = met
m_diff = copy(c_m_diff)
print('\t + For input metallicity {}, closest value is {}.'.
format(s_met, chosen_met))
else:
chosen_met = s_met
# Generate the folder name:
if chosen_met == 0.0:
met_folder = 'm00'
model = 'Z-0.0'
else:
abs_met = str(np.abs(chosen_met)).split('.')
if chosen_met<0:
met_folder = 'm'+abs_met[0]+abs_met[1]
model = 'Z-'+abs_met[0]+abs_met[1]
else:
met_folder = 'p'+abs_met[0]+abs_met[1]
model = 'Z+'+abs_met[0]+abs_met[1]
chosen_met_folder = model_path + met_folder
# Check if folder exists. If it does not, create it and download the
# PHOENIX models that are closer in temperature and gravity to the
# user input values:
if not os.path.exists(chosen_met_folder):
os.mkdir(chosen_met_folder)
cwd = os.getcwd()
os.chdir(chosen_met_folder)
# See if in a past call the file list for the given metallicity was
# saved; if not, retrieve it from the PHOENIX website:
if os.path.exists('file_list.dat'):
with open('file_list.dat') as f:
all_files = f.readlines()
for i in np.arange(len(all_files)):
all_files[i] = all_files[i].strip()
else:
response = urlopen('ftp://phoenix.astro.physik.uni-goettingen.de/SpecIntFITS/PHOENIX-ACES-AGSS-COND-SPECINT-2011/'+model+'/')
html = str(response.read())
all_files = []
while True:
idx = html.find('lte')
if(idx==-1):
break
else:
idx2 = html.find('.fits')
all_files.append(html[idx:idx2+5])
html = html[idx2+5:]
f = open('file_list.dat','w')
for file in all_files:
f.write(file+'\n')
f.close()
# Now check closest Teff for input star:
t_diff = np.inf
chosen_teff = np.inf
for file in all_files:
teff = np.double(file[3:8])
c_t_diff = abs(teff-s_teff)
if(c_t_diff<t_diff):
chosen_teff = teff
t_diff = c_t_diff
print('\t + For input effective temperature {:.1f} K, closest '
'value is {:.0f} K.'.format(s_teff, chosen_teff))
teff_files = []
teff_string = "{:05.0f}".format(chosen_teff)
for file in all_files:
if teff_string in file:
teff_files.append(file)
# Now check closest gravity:
grav_diff = np.inf
chosen_grav = np.inf
chosen_fname = ''
for file in teff_files:
grav = np.double(file[9:13])
c_g_diff = abs(grav-s_grav)
if(c_g_diff<grav_diff):
chosen_grav = grav
grav_diff = c_g_diff
chosen_fname = file
print('\t + Checking if PHOENIX model file is on the system...')
# Check if file is already downloaded. If not, download it from the PHOENIX website:
if not os.path.exists(chosen_fname):
print('\t + Model file not found.')
downloader('ftp://phoenix.astro.physik.uni-goettingen.de/SpecIntFITS/PHOENIX-ACES-AGSS-COND-SPECINT-2011/'+model+'/'+chosen_fname)
else:
print('\t + Model file found.')
os.chdir(cwd)
chosen_path = chosen_met_folder + '/' + chosen_fname
# Summary:
print('\t + For input metallicity {}, effective temperature {} K, and\n'
'\t log-gravity {}, closest combination is metallicity: {},\n'
'\t effective temperature: {} K, and log-gravity {}\n\n'
'\t + Chosen model file to be used:\n\t\t{:s}\n'.format(s_met, s_teff,
s_grav, chosen_met, chosen_teff, chosen_grav, chosen_fname))
return chosen_path, chosen_teff, chosen_grav, chosen_met, s_vturb
def get_response(min_w, max_w, response_function):
root = rootdir + "/response_functions/"
# Standard response functions:
if response_function.lower() == 'kphires':
response_file = root + "standard/kepler_response_hires1.txt"
elif response_function.lower() == 'kplowres':
response_file = root + "standard/kepler_response_lowres1.txt"
elif response_function.lower() == 'irac1':
response_file = root + "standard/IRAC1_subarray_response_function.txt"
elif response_function.lower() == 'irac2':
response_file = root + "standard/RAC2_subarray_response_function.txt"
elif response_function.lower() == 'wfc3':
response_file = root + "standard/WFC3_response_function.txt"
# User-defined response functions:
else:
if os.path.exists(root + response_function):
response_file = root + response_function
elif os.path.exists(response_function): # RF not in RF folder:
response_file = response_function
else:
print("Error: '{:s}' is not valid.".format(response_function))
sys.exit()
# Open the response file, which we assume has as first column wavelength
# and second column the response:
w, r = np.loadtxt(response_file, unpack=True)
if('kepler' in response_file):
w = 10*w
if min_w is None:
min_w = min(w)
if max_w is None:
max_w = max(w)
print('\t > Kepler response file detected. Switch from '
'nanometers to Angstroms.')
print('\t > Minimum wavelength: {} A.\n'
'\t > Maximum wavelength: {} A.'.format(min(w), max(w)))
elif('IRAC' in response_file):
w = 1e4*w
if min_w is None:
min_w = min(w)
if max_w is None:
max_w = max(w)
print('\t > IRAC response file detected. Switch from microns to '
'Angstroms.')
print('\t > Minimum wavelength: {} A.\n'
'\t > Maximum wavelength: {} A.'.format(min(w), max(w)))
else:
if min_w is None:
min_w = min(w)
if max_w is None:
max_w = max(w)
# Fit a univariate linear spline (k=1) with s=0 (a node in each data-point):
S = si.UnivariateSpline(w, r, s=0, k=1)
if type(min_w) is list:
S_wav = []
S_res = []
for i in range(len(min_w)):
c_idx = np.where((w>min_w[i])&(w<max_w[i]))[0]
c_S_wav = np.append(np.append(min_w[i], w[c_idx]), max_w[i])
c_S_res = np.append(np.append(S(min_w[i]), r[c_idx]), S(max_w[i]))
S_wav.append(np.copy(c_S_wav))
S_res.append(np.copy(c_S_res))
else:
idx = np.where((w>min_w) & (w<max_w))[0]
S_wav = np.append(np.append(min_w, w[idx]), max_w)
S_res = np.append(np.append(S(min_w), r[idx]), S(max_w))
return min_w, max_w, S_wav, S_res
def read_ATLAS(chosen_filename, model):
# Define the ATLAS grid in mu = cos(theta):
mu = np.array([1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25,
0.2, 0.15, 0.125, 0.1, 0.075, 0.05, 0.025, 0.01])
mu100 = np.arange(1.0, 0.0, -0.01)
# Now prepare files and read data from the ATLAS models:
with open(chosen_filename, 'r') as f:
lines = f.readlines()
# Remove comments and blank lines:
for i in np.flipud(np.arange(len(lines))):
if lines[i].strip() == "" or lines[i].strip().startswith("#"):
lines.pop(i)
nwave = len(lines)
wavelengths = np.zeros(nwave)
intensities = np.zeros((nwave, len(mu)))
I100 = np.zeros((nwave, len(mu100)))
for i in np.arange(nwave):
# If no jump of line or comment, save the intensities:
splitted = lines[i].split()
if len(splitted)==18:
wavelengths[i] = np.double(splitted[0])*10 # nano to angstrom
intensities[i] = np.array(splitted[1:], np.double)
ndigits = len(str(int(intensities[i,1])))
# Only if I(1) is different from zero, fit the LDs:
if intensities[i,0] != 0.0:
# Kurucz doesn't put points on his files (e.g.: 0.8013 is 8013).
intensities[i,1:] = intensities[i,1:]/1e5
# Normalzie intensities wrt the first one:
intensities[i,1:] = intensities[i,1:]*intensities[i,0]
# If requested, extract the 100 mu-points, with cubic spline
# interpolation (k=3) through all points (s=0) as CB11:
if model == 'A100':
II = si.UnivariateSpline(mu[::-1], intensities[i,::-1],
s=0, k=3)
I100[i] = II(mu100)
# Select only those with non-zero intensity:
flag = intensities[:,0] != 0.0
if model == "A100":
return wavelengths[flag], I100[flag], mu100
else:
return wavelengths[flag], intensities[flag], mu
def read_PHOENIX(chosen_path):
mu = fits.getdata(chosen_path, 'MU')
data = fits.getdata(chosen_path)
CDELT1 = fits.getval(chosen_path, 'CDELT1')
CRVAL1 = fits.getval(chosen_path, 'CRVAL1')
wavelengths = np.arange(data.shape[1]) * CDELT1 + CRVAL1
I = data.transpose()
return wavelengths, I, mu
def integrate_response_ATLAS(wavelengths, I, mu, S_res, S_wav,
atlas_correction, photon_correction,
interpolation_order, model):
# Define the number of mu angles at which we will perform the integrations:
nmus = len(mu)
# Integrate intensity through each angle:
I_l = np.array([])
for i in range(nmus):
# Interpolate the intensities:
Ifunc = si.UnivariateSpline(wavelengths, I[:,i], s=0,
k=interpolation_order)
# If several wavelength ranges where given, integrate through
# each chunk one at a time. If not, integrate the given chunk:
if type(S_res) is list:
integration_results = 0.0
for j in range(len(S_res)):
if atlas_correction and photon_correction:
integrand = (S_res[j]*Ifunc(S_wav[j])) / S_wav[j]
elif atlas_correction and not photon_correction:
integrand = (S_res[j]*Ifunc(S_wav[j])) / (S_wav[j]**2)
elif not atlas_correction and photon_correction:
integrand = (S_res[j]*Ifunc(S_wav[j])) * (S_wav[j])
else:
integrand = S_res[j]*Ifunc(S_wav[j])*S_wav[j]
integration_results += np.trapz(integrand, x=S_wav[j])
else:
if atlas_correction and photon_correction:
integrand = (S_res*Ifunc(S_wav)) / S_wav
elif atlas_correction and not photon_correction:
integrand = (S_res*Ifunc(S_wav)) / (S_wav**2)
elif not atlas_correction and photon_correction:
integrand = S_res*Ifunc(S_wav) * S_wav
else:
integrand = S_res*Ifunc(S_wav)
integration_results = np.trapz(integrand, x=S_wav)
I_l = np.append(I_l, integration_results)
I0 = I_l/(I_l[0])
return I0
def integrate_response_PHOENIX(wavelengths, I, mu, S_res, S_wav, correction,
interpolation_order):
I_l = np.array([])
for i in range(len(mu)):
Ifunc = si.UnivariateSpline(wavelengths, I[:,i], s=0,
k=interpolation_order)
if type(S_res) is list:
integration_results = 0.0
for j in range(len(S_res)):
if correction:
integrand = S_res[j]*Ifunc(S_wav[j])*S_wav[j]
else:
integrand = S_res[j]*Ifunc(S_wav[j])
integration_results += np.trapz(integrand, x=S_wav[j])
else:
integrand = S_res * Ifunc(S_wav) #lambda x,I,S: I(x)*S(x)
if correction:
integrand *= S_wav #lambda x,I,S: (I(x)*S(x))*x
# Integral of Intensity_nu*(Response Function*lambda)*c/lambda**2
integration_results = np.trapz(integrand, x=S_wav)
I_l = np.append(I_l,integration_results)
return I_l/(I_l[-1])
def get_rmax(mu, I0):
# Apply correction due to spherical extension. First, estimate the r:
r = np.sqrt(1.0-(mu**2))
# Estimate the derivatives at each point:
rPi, m = get_derivatives(r,I0)
# Estimate point of maximum (absolute) derivative:
idx_max = np.argmax(np.abs(m))
r_max = rPi[idx_max]
# To refine this value, take 20 points to the left and 20 to the right
# of this value, generate spline and search for roots:
ndata = 20
idx_lo = np.max([idx_max-ndata, 0])
idx_hi = np.min([idx_max+ndata, len(mu)-1])
r_maxes = rPi[idx_lo:idx_hi]
m_maxes = m[idx_lo:idx_hi]
spl = si.UnivariateSpline(r_maxes[::-1],m_maxes[::-1],s=0,k=4)
fine_r_max = spl.derivative().roots()
if(len(fine_r_max)>1):
abs_diff = np.abs(fine_r_max-r_max)
iidx_min = np.where(abs_diff == np.min(abs_diff))[0]
fine_r_max = fine_r_max[iidx_min]
return r,fine_r_max
def get100_PHOENIX(wavelengths, I, new_mu, idx_new):
mu100 = np.arange(0.01, 1.01, 0.01)
I100 = np.zeros((len(wavelengths),len(mu100)))
for i in range(len(wavelengths)):
# Cubic splines (k=3), interpolation through all points (s=0) ala CB11.
II = si.UnivariateSpline(new_mu, I[i,idx_new], s=0, k=3)
I100[i] = II(mu100)
return mu100, I100
def calc_lds(name, response_function, model, s_met, s_grav, s_teff,
s_vturb, min_w=None, max_w=None, atlas_correction=True,
photon_correction=True, interpolation_order=1, fout=None):
"""
Generate the limb-darkening coefficients. Note that response_function
can be a string with the filename of a response function not in the
list. The file has to be in the response_functions folder.
Parameters
----------
name: String
Name of the object we are working on.
response_function: String
Number of a standard response function or filename of a response
function under the response_functions folder.
model: String
Fitting technique model.
s_met: Float
Metallicity of the star.
s_grav: Float
log_g of the star (cgs).
s_teff: Float
Effective temperature of the star (K).
s_vturb: Float
Turbulent velocity in the star (km/s)
min_w: Float
Minimum wavelength to integrate (if None, use the minimum wavelength
of the response function).
max_w: Float
Maximum wavelength to integrate (if None, use the maximum wavelength
of the response function).
atlas_correction: Bool
True if corrections in the integrand of the ATLAS models should
be applied (i.e., transformation of ATLAS intensities given in
frequency to per wavelength)
photon_correction: Bool
If True, correction for photon-counting devices is used.
interpolation_order: Integer
Degree of the spline interpolation order.
fout: FILE
If not None, file where to save the LDCs.
Returns
-------
LDC: 1D float tuple
The linear (a), quadratic (u1, u2), three-parameter (b1, b2, b3),
non-linear (c1, c2, c3, c4), logarithmic (l1, l2),
exponential (e1, e2), and square-root laws (s1, s2).
"""
print('\n\t Reading response functions\n\t --------------------------')
# Get the response file minimum and maximum wavelengths and all the
# wavelengths and values: