-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
52 lines (45 loc) · 1.4 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import os
from sklearn import svm
from sklearn import metrics
import joblib
def load_data(PATH):
data = []
labels = []
i = 0
folderList = os.listdir(PATH)
print("[+] Loading data")
for folder in folderList:
fileList = os.listdir(os.path.join(PATH, folder))
for file in fileList:
filePath = os.path.join(PATH, folder, file)
x = np.load(filePath)[0]
print(x)
data.append(x)
if folder == "man":
label = 0
else:
label = 1
labels.append([label])
i = i + 1
print("Loaded", i)
data = np.array(data,dtype="float")/255.0
labels = np.array(labels)
print("Done loading")
return data, labels
def train_model_SVMLinear(dataTrain, labelTrain, dataTest, labelTest):
print("[+] Training model")
clf = svm.SVC(kernel='linear')
clf.fit(dataTrain, labelTrain)
print("Done training")
pd = clf.predict(dataTest)
print("[+] Testing model")
print("Testing accuracy: ", metrics.accuracy_score(labelTest, pd))
joblib.dump(clf, "train_model.pkl")
print('Model save as "train_model.pkl"')
return clf
trainPath = "train_x/"
trainData, trainLabels = load_data(trainPath)
testPath = "test_x/"
testData, testLabels = load_data(testPath)
train_model_SVMLinear(trainData, trainLabels, testData, testLabels)