-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSTAT160BHW1.py
127 lines (104 loc) · 3.18 KB
/
PSTAT160BHW1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
This is HW 1
For PSTAT 160B
Prof Ichiba
TA: Mousavi
"""
# import modules
from __future__ import division
import numpy as np
# Define variables for Part A
n = 3
mean = 1
def part_a():
# Generate 3 random exponential variables
X1 = np.random.exponential(scale = 1.0)
X2 = np.random.exponential(scale = 1.0)
X3 = np.random.exponential(scale = 1.0)
# Find the max via if statements
max = X1
subscript = 1
if X2 > max:
max = X2
subscript = 2
if X3 > max:
max = X3
subscript = 3
# Print out results
print("The max Xi for i = 1, 2, 3 is X{0}, with a value of {1}").format(subscript, max)
def part_b():
# Declare variables for simulations
num_sim = 1000
current_sim = 0
# Create lists to store the min and max values of every conditioned simulation
min_Xi = []
max_Xi = []
min_Xi_2 = []
max_Xi_2 = []
while current_sim < num_sim:
# Generate random variables
X1 = np.random.exponential(scale = 1.0)
X2 = np.random.exponential(scale = 1.0)
X3 = np.random.exponential(scale = 1.0)
# Check conditions for Part ii and iii of Part B
# Part i will be calculated later
if X1 < X2:
# Part ii
min = X1
if X2 < min:
min = X2
if X3 < min:
min = X3
min_Xi.append(min)
# Part iii
max = X1
if X2 > max:
max = X2
if X3 > max:
max = X3
max_Xi.append(max)
# Check condition for Part iv and v of Part B
if X1 < X2 < X3:
# Part iii
# Since X1 < X2 < X3, X1 is ALWAYS the minimum value
min_2 = X1
# Would use this code if it was necessary
"""
if X2 < min_2:
min_2 = X2
if X3 < min_2:
min_2 = X3
"""
min_Xi_2.append(min_2)
# Part iv
# Since X1 < X2 < X3, X1 is ALWAYS the maximum value
max_2 = X3
# Would use this code if it was necessary
"""
if X2 > max_2:
max_2 = X2
if X3 > max_2:
max_2 = X3
"""
max_Xi_2.append(max_2)
# Increment the count
current_sim += 1
# Solve Part i of B using length of either min_Xi_2 or max_Xi_2
# Since the lengths of both are the number of times that X1 < X2 < X3
prob = len(min_Xi_2) / num_sim
print("P(X1 < X2 < X3) = %.3f" % prob)
# Part ii
exp_min_1 = sum(min_Xi) / len(min_Xi)
print("E[minimum Xi for i = 1, 2, 3 | X1 < X2] = %.2f" % exp_min_1)
# Part iii
exp_max_1 = sum(max_Xi) / len(max_Xi)
print("E[maximum Xi for i = 1, 2, 3 | X1 < X2] = %.2f" % exp_max_1)
# Part iv
exp_max_2 = sum(max_Xi_2) / len(max_Xi_2)
print("E[maximum Xi for i = 1, 2, 3 | X1 < X2 < X3] = %.2f" % exp_max_2)
# Part iv
exp_min_2 = sum(min_Xi_2) / len(min_Xi_2)
print("E[minimum Xi for i = 1, 2, 3 | X1 < X2 < X3] = %.2f" % exp_min_2)
# Call functions
part_a()
part_b()