-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSTAT160BHW2.py
191 lines (155 loc) · 8.25 KB
/
PSTAT160BHW2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
This is the Python HW 2
for PSTAT 160B
Prof Ichiba
TA: Mousavi
Section: W 1:00 - 1:50pm
"""
from __future__ import division
import random
import math
import matplotlib.pyplot as plt
import numpy as np
def Part_A():
# Define the sample path of N(t) for the time interval [0, 10]
# Let us define start time; end time will be defined below
start_time = 0
# Our Poisson process will have parameter lamdba * time
# First we define intensity (or lambda)
lmda = 10
# Next we define the time variable through which our Poisson Process simulates
t = 10
# Now let's simulate a Poisson Process with parameter lambda * time
N1 = np.random.poisson(lmda * t)
print("Part A:")
print("The number of events that has occurred for our Poisson Process from time t = 0 to t = 10 is %d" % N1)
# Every event in the Poisson Process arrives uniformly between the time interval [0, 10]
# We will simulate N uniform random variables to simulate the occurances of the events in the Poisson Process
# We make a list for these below
# We initialize 0 as the first value to account for the time between t = 0 and the first event
interarrival_times = [0]
# And now simulate those event times
for i in range(start_time, N1):
interarrival_time = np.random.uniform(start_time, t)
interarrival_times.append(interarrival_time)
# The times are not in order so we need to sort them
sorted_times = sorted(interarrival_times)
# We now have the times of the event occurances
# Now we need a complimentary list of numbers from 0 to N
# As we are making a stepwise graph
# And an event occurs at every interarrival time
events = [i for i in range(start_time, N1 + 1)]
# Now lets do a stepwise plot
plt.step(sorted_times, events)
plt.show()
def Part_B():
# We have a Pareto distribution with the following parameters
scale = (1 / 3)
shape = 3
# Define Poisson rate parameter
lmda = 10
# Create an instance of the Pareto distribution
T = np.random.pareto(shape) * scale
print(T)
# Now we have to determine N(T)
# By conditioning on T we can treat it as a constant
# And plug it into the Poisson Process
# This means we simulate a Poisson Process
# With parameter lambda * T
N2 = np.random.poisson(lmda * T)
print("\nPart B:")
print("The number of events that have occurred up until time T is %d" % N2)
def Part_C():
# Now we must simulate Part B 10,000 times
# We have a Pareto distribution with the following parameters
scale = (1 / 3)
shape = 3
# Define Poisson rate parameter
lmda = 10
# Make lists to store values of T and N(T)
T_values = []
NT_values = []
# Run simulations
current_sim = 0
num_sim = 10000
while current_sim < num_sim:
# Create an instance of the Pareto distribution
T2 = np.random.pareto(shape) * scale
# Now we have to determine N(T)
# By conditioning on T we can treat it as a constant
# And plug it into the Poisson Process
# This means we simulate a Poisson Process
# With parameter lambda * T
N3 = np.random.poisson(lmda * T2)
# Append values
T_values.append(T2)
NT_values.append(N3)
# Increment count
current_sim += 1
# Determine Cov(T, N(T)) and Var(N(T)) using the variance covariance matrix
var_cov = np.cov(T_values, NT_values)
print("\nPart C:")
print("Here is the Variance Covariance Matrix of T and N(T):")
print(var_cov)
print("\nThe value in the top left, %f, is the Variance of T" % var_cov[0][0])
print("The values in the top right/bottom left, %f, represent the Covariance of T and N(T)" % var_cov[0][1])
print("The value in the bottom right, %f, is the Variance of N(T)" % var_cov[1][1])
def Part_D():
# Now we want to find the standard error of the estimates of Cov(T, N(T)) and Var(N(T))
# Standard error of a quantity is defined as standard deviation of the quantity divided by square root n
# In order to do this we will run the 10,000 simulations of T and N(T) 100 times
# And use that for our estimates
# We have a Pareto distribution with the following parameters
scale = (1 / 3)
shape = 3
# Define Poisson rate parameter
lmda = 10
# Make parameters to simulate the simulations
num_sim_of_sim = 0
sim_of_sim = 100
# Keep track of Cov(T, N(T)) and Var(N(T))
cov_values = []
var_values = []
while num_sim_of_sim < sim_of_sim:
# Make lists to store values of T and N(T)
T_values = []
NT_values = []
# Run simulations
current_sim = 0
num_sim = 10000
while current_sim < num_sim:
# Create an instance of the Pareto distribution
T3 = np.random.pareto(shape) * scale
# Now we have to determine N(T)
# By conditioning on T we can treat it as a constant
# And plug it into the Poisson Process
# This means we simulate a Poisson Process
# With parameter lambda * T
N4 = np.random.poisson(lmda * T3)
# Append values
T_values.append(T3)
NT_values.append(N4)
# Increment count
current_sim += 1
# Determine Cov(T, N(T)) and Var(N(T)) using the variance covariance matrix
var_cov = np.cov(T_values, NT_values)
# Extract Cov(T, N(T)) and Var(N(T)) from above matrix
cov_T_NT = var_cov[0][1]
var_NT = var_cov[1][1]
# Append to the lists made earlier
cov_values.append(cov_T_NT)
var_values.append(var_NT)
# Increment count
num_sim_of_sim += 1
# Calculate the standard error of Cov(T, N(T)) and Var(N(T))
cov_stan_error = (math.sqrt(np.mean(abs(cov_values - np.mean(cov_values)) ** 2))) / sim_of_sim
var_stan_error = (math.sqrt(np.mean(abs(var_values - np.mean(var_values)) ** 2))) / sim_of_sim
# Print them out
print("\nPart D:")
print("Standard Error of Cov(T, N(T)) is %f" % cov_stan_error)
print("Standard Error of Var(N(T)) is %f" % var_stan_error)
# Call functions
Part_A()
Part_B()
Part_C()
Part_D()